首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genotypic variations in the adaptive response to low-phosphorus (P) stress and P-uptake efficiency have been widely reported in many crops. We conducted a pot experiment to evaluate the P-acquisition ability of two rapeseed (Brassica napus) genotypes supplied with two sparingly soluble sources of P, Al-P and Fe-P. Then, the root morphology, proton concentrations, and carboxylate content were investigated in a solution experiment to examine the genotypic difference in P-acquisition efficiency. Both genotypes produced greater biomass and accumulated more P when supplied with Al-P than when supplied with Fe-P. The P-efficient genotype 102 showed a significantly greater ability to deplete sparingly soluble P from the rhizosphere soil because of its greater biomass and higher P uptake compared with those of the P-inefficient genotype 105. In the solution experiment, the P-efficient genotype under low-P conditions developed dominant root morphological traits, and it showed more intensive rhizosphere acidification because of greater H+ efflux, higher H+-ATPase activity, and greater exudation of carboxylates than the P-inefficient genotype. Thus, a combination of morphological and physiological mechanisms contributed to the genotypic variation in the utilization of different sparingly soluble P sources in B. napus.  相似文献   

2.

Aims

Phosphorus (P) limits crop yield and P-fertilisers are frequently applied to agricultural soils. However, supplies of quality rock phosphate are diminishing. Plants have evolved mechanisms to improve P-acquisition and understanding these could improve the long-term sustainability of agriculture. Here we examined interactions between root hairs and arbuscular mycorrhizal (AM) colonisation in barley (Hordeum vulgare L.).

Methods

Barley mutants exhibiting different root hair phenotypes, wild type barley and narrowleaf plantain (Plantago lanceolata L.) were grown in the glasshouse in P-sufficient and P-deficient treatments and allowed to develop AM colonization from the natural soil community. Plants were harvested after 6 weeks growth and root hair length, AM-fungal colonisation, shoot biomass and P-accumulation measured.

Results

Under P-deficient conditions, root hair length and AM colonisation were negatively related suggesting that resources are allocated to root hairs rather than to AM fungi in response to P-deficiency. There was evidence that barley and narrowleaf plantain employed different strategies to increase P-acquisition under identical conditions, but root hairs were more effective.

Conclusions

This research suggests future barley breeding programmes should focus on maintaining or improving root hair phenotypes and that pursuing enhancements to AM associations under the prevalent agricultural conditions tested here would be ineffectual.  相似文献   

3.
Aims In the Core Cape Subregion (CCR), a Mediterranean-climate ecosystem with infertile soils, the legume species Podalyria calyptrata and P. burchellii are in a separate clade to P. leipoldtii and P. myrtillifolia. The closely related species are allopatric, and with the west-east climate gradient and variation in soil nutrient availability in the CCR, it was hypothesized that the two closely related allopatric species would differ in their ecological niche and root:shoot ratio, specific root length (SRL) and organic acid exudation responses to phosphorus (P) supply.Methods With increasing P supply in the glasshouse, we measured plant biomass, leaf nitrogen ([N]), [P], root morphology and release of organic acids. We determined species soil and leaf [N] and [P] and climate in field sites.Important findings At low P supply, P. calyptrata roots exuded more organic acids than P. burchellii which instead produced roots with a greater SRL, and P. myrtillifolia allocated more biomass to roots than P. leipoldtii. In the field, leaf [P] and climate suggested that P. leipoldtii occupied the most oligotrophic niche followed by P. burchellii and then P. calyptrata and P. myrtillifolia. Closely related allopatric species differed in their mechanisms for P-acquisition and ecological niche, indicating that the environment overrides phylogeny in determining P-acquisition traits for these species, and suggesting that climate regulates nutrient availability, driving distribution and speciation.  相似文献   

4.
土壤酶活性作为生态系统养分循环的关键因素, 是反映土壤质量和生态系统功能的重要指标, 但是关于高寒草地生态系统中不同草地类型间酶活性的差异研究还很少。因此, 该研究在藏北高寒草地选择高寒草甸、高寒草原、高寒草甸草原、高寒荒漠草原和高寒荒漠5种草地类型进行野外原位调查和采样, 测定了涉及碳(C)、氮(N)和磷(P)循环的14种酶的活性, 并建立了高寒草地酶活性与土壤微生物和土壤理化性质等环境因子的关系。结果表明: C循环酶(蔗糖酶、纤维素酶、β-葡萄糖苷酶、多酚氧化酶和过氧化物酶)和P循环酶(碱性磷酸酶)在不同高寒草地类型间活性差异明显, N循环酶中仅芳香氨基酶和亚硝酸盐还原酶两种酶在不同高寒草地类型间活性差异明显。同时, C、N和P循环酶之间存在一定的相关关系, 其中, 蔗糖酶和碱性磷酸酶、纤维素酶和α-乙酰氨基葡萄糖苷酶活性显著正相关, 多酚氧化酶与亚硝酸还原酶和β-乙酰氨基葡萄糖苷酶活性显著负相关。在测定的19个环境指标中, 土壤有机质(SOM)含量、革兰氏阴性菌数量、土壤N和P含量计量比、革兰氏阳性菌数量、细菌数量、放线菌数量、全氮含量、真菌数量是影响土壤酶活性的关键因子, 且SOM含量的影响最大(解释量为11.9%)。综上所述, 不同高寒草地类型间C循环酶、P循环酶和两种N循环酶(芳香氨基酶和亚硝酸还原酶)活性差异显著, SOM含量、微生物数量和N含量等是影响高寒草地生态系统土壤酶活性的关键因子。  相似文献   

5.
Opportunities for improving phosphorus-use efficiency in crop plants   总被引:5,自引:0,他引:5  
Limitation of grain crop productivity by phosphorus (P) is widespread and will probably increase in the future. Enhanced P efficiency can be achieved by improved uptake of phosphate from soil (P-acquisition efficiency) and by improved productivity per unit P taken up (P-use efficiency). This review focuses on improved P-use efficiency, which can be achieved by plants that have overall lower P concentrations, and by optimal distribution and redistribution of P in the plant allowing maximum growth and biomass allocation to harvestable plant parts. Significant decreases in plant P pools may be possible, for example, through reductions of superfluous ribosomal RNA and replacement of phospholipids by sulfolipids and galactolipids. Improvements in P distribution within the plant may be possible by increased remobilization from tissues that no longer need it (e.g. senescing leaves) and reduced partitioning of P to developing grains. Such changes would prolong and enhance the productive use of P in photosynthesis and have nutritional and environmental benefits. Research considering physiological, metabolic, molecular biological, genetic and phylogenetic aspects of P-use efficiency is urgently needed to allow significant progress to be made in our understanding of this complex trait.  相似文献   

6.
Ryan  Peter R.  Dong  Bei  Watt  Michelle  Kataoka  Tatsuhiko  Delhaize  Emmanuel 《Plant and Soil》2003,248(1-2):61-69
The efflux of organic anions from roots plays an important role in plant nutrition. The release of simple carboxylic anions such as citrate, malate and oxalate have been implicated in mechanisms of aluminium (Al) tolerance and improved acquisition of soil phosphorus. These metabolites are likely to cross cell membranes as multivalent anions and recent evidence indicates that anion-permeable channels facilitate this flow in the Al-dependent efflux of malate and citrate from wheat and maize, respectively. However, the genes encoding these anion channels, or any other protein that facilitates the release of citrate, malate or oxalate have not been isolated. This is an obstacle for the application of biotechnology to combat Al toxicity and to improve P-acquisition efficiency in plants. We discuss several strategies aimed at isolating genes that facilitate organic anion release from plant roots.  相似文献   

7.
8.
9.
10.
White lupins (Lupinus albus L.) respond to phosphate deficiency by producing special root structures called cluster roots. These cluster roots secrete large amounts of carboxylates into the rhizosphere, mostly citrate and malate, which act as phosphate solubilizers and enable the plant to grow in soils with sparingly available phosphate. The success and efficiency of such a P-acquisition strategy strongly depends on the persistence and stability of the carboxylates in the soil, a parameter that is influenced to a large extent by biodegradation through rhizosphere bacteria and fungi. In this study, we show that white lupin roots use several mechanisms to reduce microbial growth. The abundance of bacteria associated with cluster roots was decreased at the mature state of the cluster roots, where a burst of organic acid excretion and a drastic pH decrease is observed. Excretion of phenolic compounds, mainly isoflavonoids, induced fungal sporulation, indicating that vegetative growth, and thus potential citrate consumption, is reduced. In addition, the activity of two antifungal cell wall-degrading enzymes, chitinase and glucanase, were highest at the stage preceding the citrate excretion. Therefore, our results suggest that white lupin has developed a complex strategy to reduce microbial degradation of the phosphate-solubilizing agents.  相似文献   

11.
BACKGROUND: Global phosphorus (P) reserves are being depleted, with half-depletion predicted to occur between 2040 and 2060. Most of the P applied in fertilizers may be sorbed by soil, and not be available for plants lacking specific adaptations. On the severely P-impoverished soils of south-western Australia and the Cape region in South Africa, non-mycorrhizal species exhibit highly effective adaptations to acquire P. A wide range of these non-mycorrhizal species, belonging to two monocotyledonous and eight dicotyledonous families, produce root clusters. Non-mycorrhizal species with root clusters appear to be particularly effective at accessing P when its availability is extremely low. SCOPE: There is a need to develop crops that are highly effective at acquiring inorganic P (Pi) from P-sorbing soils. Traits such as those found in non-mycorrhizal root-cluster-bearing species in Australia, South Africa and other P-impoverished environments are highly desirable for future crops. Root clusters combine a specialized structure with a specialized metabolism. Native species with such traits could be domesticated or crossed with existing crop species. An alternative approach would be to develop future crops with root clusters based on knowledge of the genes involved in development and functioning of root clusters. CONCLUSIONS: Root clusters offer enormous potential for future research of both a fundamental and a strategic nature. New discoveries of the development and functioning of root clusters in both monocotyledonous and dicotyledonous families are essential to produce new crops with superior P-acquisition traits.  相似文献   

12.
The greater good     
Raisa B. Deber 《CMAJ》2013,185(13):E654
  相似文献   

13.
14.
15.
An investigation of air pollution in the Tehran metropolitan area between 1992-2000 indicated that there are significant amounts of nitrate ion (NO3-), over 30 kg/ha/year, deposited as wet deposition, compared to 13 kg/ha/year in the Chitgar Parkland near the Tehran metropolitan area. The amount of NO3- in warm seasons is twofold that of cold seasons, and there was a significant difference between cold and warm seasons. Annual wet deposition of ammonia (NH3) was 10 kg/ha/year in the Chitgar Parkland.  相似文献   

16.
17.
18.
French scientists look set for greater public scrutiny if measures proposed at a recent meeting are carried out, writes Kenneth Lee.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号