共查询到20条相似文献,搜索用时 0 毫秒
1.
Paschalia Kapli Dimitra Botoni Çetin Ilgaz Yusuf Kumlutaş Aziz Avcı Nasrullah Rastegar-Pouyani Behzad Fathinia Petros Lymberakis Faraham Ahmadzadeh Nikos Poulakakis 《Molecular phylogenetics and evolution》2013,66(3):992-1001
Apathya is a lacertid genus occurring mainly in south-east Turkey and its adjacent regions (part of Iran and Iraq). So far two morphological species have been attributed to the genus; A. cappadocica (with five subspecies, A. c. cappadocica, A. c. muhtari, A. c. schmidtlerorum, A. c. urmiana and A. c. wolteri) and A. yassujica. The first species occupies most of the genus’ distribution range, while A. yassujica is endemic of the Zagros Mountains. Here, we explored Apathya’s taxonomy and investigated the evolutionary history of the species by employing phylogenetic and phylogeographic approaches and using both mitochondrial (mtDNA) and nuclear markers. The phylogenetic relationships and the genetic distances retrieved, revealed that Apathya is a highly variable genus, which parallels its high morphological variation. Such levels of morphological and genetic differentiation often exceed those between species of other Lacertini genera that are already treated as full species, suggesting the necessity for a taxonomic revision of Apathya. The phylogeographical scenario emerging from the genetic data suggests that the present distribution of the genus was determined by a combination of dispersal and vicariance events between Anatolia and Southwest Asia dating back to the Miocene and continuing up to the Pleistocene. Key geological events for the understanding of the phylogeography of the genus are the movement of the Arabian plate that led to the configuration of Middle East (orogenesis of the mountain ranges of Turkey and Iran) and the formation of Anatolian Diagonal. 相似文献
2.
Virginia Rodríguez Richard P. Brown Bàrbara Terrasa Valentín Pérez-Mellado Antònia Picornell José A. Castro Cori Ramon 《Conservation Genetics》2014,15(2):295-304
Podarcis filfolensis is an endemic lizard from the Maltese archipelago. There is evidence of human-mediated decline and even extirpation of some insular populations of this species. However, information about the intraspecific genetic diversity and phylogeographic patterns of this species is limited. Here we analyze genetic markers from a multi-locus dataset (mtDNA, 2,533 bp; nuclear c-mos gene, 353 bp; 11 microsatellites) for individuals from extant populations of P. filfolensis. Despite generally low genetic variability, two main mitochondrial groupings were clearly identified. In general, individuals from the main island of Malta were genetically distinct from those from Gozo, Comino, Cominotto and Small Blue Lagoon Rock, and also from Linosa and Lampione individuals. Three genetic clusters were detected based on microsatellite data: one was found at higher frequency on Malta, while the other two included samples from the remaining islands, showing some concordance with the mtDNA pattern. A time-calibrated Bayesian tree for the principal mitochondrial lineages indicated strong statistical support for two P. filfolensis lineages that originated in the Pleistocene (105.4–869 Ka). We show that these lineages largely meet the criteria for recognition as evolutionary significant units despite some recent admixture (possibly due to recent translocations between islands). Human disturbance, low genetic variability, evidence of bottlenecks and extirpation on one island indicate that a thorough review of the current conservation status of P. filfolensis would be timely. 相似文献
3.
We describe a new species of Alopoglossus from the Pacific slopes of the Andes in northern Ecuador based on morphological and molecular evidence. The new species differs most significantly from all other congeners in having a double longitudinal row of widened gular scales, lanceolate dorsal scales in transverse rows, 29–32 dorsal scales in a transverse row at midbody, and 4 longitudinal rows of ventrals at midbody. It is most similar in morphology to A. festae, the only species of Alopoglossus currently recognized in western Ecuador. We analyze the phylogenetic relationships among species of Alopoglossus based on the mitochondrial gene ND4. Cis-Andean [east of the Andes] and Trans-Andean [west of the Andes] species are nested in two separate clades, suggesting that the uplift of these mountains had an important effect in the diversification of Alopoglossus. In addition, we present an updated key to the species of Alopoglossus. 相似文献
4.
Juan Manuel Díaz Gómez 《Zoologica scripta》2009,38(1):1-7
Establishing the ancestral area of a group of organisms is one of the central objectives of historical biogeography. I applied three methods of ancestral area analysis, Fitch optimization, weighted ancestral area analysis and dispersal-vicariance analysis (DIVA) to establish the ancestral area of the iguanian lizard genus Phymaturus . I then extended the analysis to hypothesize the ancestral area for Liolaemidae ( Ctenoblepharys , Liolaemus and Phymaturus ). The ancestral area for Phymaturus is Patagonia Central or Patagonia Central-Cordillera Andina and Valle Central. For Liolaemidae, the ancestral area is Patagonia Central-Coastal Perú, or Patagonia Central-Patagonia Occidental-Cordillera Andina and Valle Central-Coastal Perú. The ancestral area of Phymaturus is congruent with previous studies, but the inclusion of Ctenoblepharys poses some questions regarding the distribution of the ancestor of the family. 相似文献
5.
The brush and tree lizards (Urosaurus) are a small clade of phrynosomatid lizards native to western North America. Though not as well known as their diverse sister clade, the spiny lizards (Sceloporus), some Urosaurus have nonetheless become model organisms in integrative biology. In particular, dramatic phenotypic and behavioral differences associated with specific mating strategies have been exploited to address a range of ecological and evolutionary questions. However, only two phylogenies have been proposed for the group, one of which is pre-cladistic and both based principally on morphological characters that might not provide robust support for relationships within the group. To help provide investigators working on Urosaurus with a robust phylogeny in which to frame ecological and evolutionary questions, we establish a molecular phylogeny for the group. We sampled three mitochondrial and three nuclear loci, and estimated phylogenetic relationships within Urosaurus using both maximum parsimony (MP) and Bayesian inference (BI), as well as a coalescent-based species tree approach. Finally, we used two methods of ancestral state reconstruction (ASR) to gain insight into the evolution of microhabitat preference and male display signals, traits that have been the focus of studies on Urosaurus. All reconstruction methods yield nearly the same ingroup topology that is concordant in most respects with the previous cladistic analysis of the group but with some significant differences; our data suggest the primary divergence in Urosaurus occurs between a clade endemic to the Pacific versant of Mexico and the lineages of Baja California and the southwestern US, rather than placing Urosaurus graciosus as the basal taxon and linking the Baja and Mexican endemics. We find support for a single transition to a saxicolous lifestyle within the group, and either the independent gain or loss of arboreality. The evolution of throat color patterns (i.e. dewlaps) appears complex, with multiple color morphs likely involving orange reconstructed as ancestral to the group and to most lineages, followed by a single transition to a fixed blue-throated morph in one clade. These results should provide a useful framework for additional comparative work with Urosaurus, and establish the phylogenetic context in which Urosaurus diversity arose. 相似文献
6.
A molecular phylogeny based on DNA/DNA hybridization revealed that the Sylvia-Parisoma complex is monophyletic and includes three main groups of species, the “mid-European” warblers, the genus Parisoma, and the “eu-Mediterranean” Sylvia species sensu stricto. The latter can be assigned to three main clusters, a “West-Mediterranean” group, a “Central-Mediterranean group”, and an “East-Mediterranean” group. The radiation of the whole complex is much more ancient than formerly believed. It started ca 12–13 Ma ago and the ancestors of the main extant groups differentiated during the Pliocene. Only speciation events within the “eu-Mediterranean” lineages occurred during the Pleistocene. The paleoclimatical and paleoecological history of the Mediterranean region is too complicated to provide any evidence for direct relationships between past events and evolutionary steps of these taxa which did not leave any reliable fossil record. However, some major speciation events may be related to well documented climatical crises as well as paleobotanical data. The largely man-induced extension of matorrals over several millenia presumably extended the range of several species that were formerly much more restricted, which complicates reconstruction of the spatio-temporal course of speciation. 相似文献
7.
Swallowtail butterflies are recognized as model organisms in ecology, evolutionary biology, genetics, and conservation biology but present numerous unresolved phylogenetic problems. We inferred phylogenetic relationships for 51 of about 205 species of the genus Papilio (sensu lato) from 3.3-Kilobase (kb) sequences of mitochondrial and nuclear DNA (2.3 kb of cytochrome oxidases I and II and 1.0 kb of elongation factor 1 alpha). Congruent phylogenetic trees were recovered within Papilio from analyses of combined data using maximum likelihood, Bayesian analysis, and maximum parsimony bootstrap consensus. Several disagreements with the traditional classification of Papilio were found. Five major previously hypothesized subdivisions within Papilio were well supported: Heraclides, Pterourus, Chilasa, Papilio (sensu stricto), and Eleppone. Further studies are required to clarify relationships within traditional "Princeps," which was paraphyletic. Several biologically interesting characteristics of Papilio appear to have polyphyletic origins, including mimetic adults, larval host associations, and larval morphology. Early diversification within Papilio is estimated at 55-65 million years ago based on a combination of biogeographic time constraints rather than fossils. This divergence time suggests that Papilio has slower apparent substitution rates than do Drosophila and fig-pollinating wasps and/or divergences corrected using best-fit substitution models are still being consistently underestimated. The amount of sequence divergence between Papilio subdivisions is equivalent to divergences between genera in other tribes of the Papilionidae, and between genera of moths of the noctuid subfamily Heliothinae. 相似文献
8.
Poulakakis N Lymberakis P Antoniou A Chalkia D Zouros E Mylonas M Valakos E 《Molecular phylogenetics and evolution》2003,28(1):38-46
Erhard's wall lizard, Podarcis erhardii (Sauria: Lacertidae), is highly diversified in Greece and especially in the southern Aegean region. Out of the 28 recognized subspecies, 27 are found in Greece from the North Sporades island-complex in the North Aegean (grossly south of the 39th parallel) to the island of Crete in the South. The species exhibits great morphological and ecological plasticity and inhabits many different habitats from rocky islets and sandy shores to mountaintops as high as 2000m. By examining intraspecific variability at a segment of the mitochondrial gene cytochrome b we have found that that extant populations of P. erhardii are paraphyletic. Furthermore, we have found that subspecies previously defined on the basis of morphological characteristics do not correspond to different molecular phylogenetic clades, so that their status should be reconsidered. The DNA based biogeographical and phylogenetic history of Podarcis in Southern Greece is congruent with available paleogeographic data of the region, which supports the view that DNA sequences may be a useful tool for the study of palaeogeography. 相似文献
9.
The lizard genus Liolaemus is endemic to temperate South America and includes 190 species. Liolaemus bibronii has a large geographic distribution and inhabits a great diversity of habitats, including the Monte, Steppe, and high Andean grassland environments. Liolaemus gracilis has a similar body size and shape to L. bibronii; the two are parapatrically distributed, and L. gracilis is also widely distributed. Here we use the mtDNA cytb sequence data of these two species to investigate lizard phylogeographic patterns in southern South America. L. bibronii is paraphyletic with respect to L. gracilis, Liolaemus ramirezae, Liolaemus robertmertensi and Liolaemus saxatilis; it is composed of many genetically different allopatric haploclades, some of which are reciprocally monophyletic. We also found evidence for introgression between L. bibronii and L. gracilis in the same area that introgression was hypothesized in the Liolaemus darwinii complex. We discuss the distribution of the major haploclades with inferences of their population histories, the concordance of these clades' distributions and histories with other lizard complexes studied with the same markers and methods, and taxonomic implications of these results. 相似文献
10.
Campos-Soldini MP 《Neotropical Entomology》2011,40(5):575-586
Epicauta includes two subgenera, and within the nominotypical subgenus several species groups. Analyzing species of southern South America, a set of species of Epicauta has the particularity to present two distinctive characters which separates this group from the other species groups of American Epicauta: color pattern of pubescence in elytra is not coincident with color pattern of tegument and endophalic hook robust. Based on these characters I propose a new group of species herein named bella group. This group includes the Neotropical species Epicauta bella M?klin, E. brunneipennis (Haag-Rutemberg), E. diagramma (Burmeister), E. griseonigra (Fairmaire), E. luctifera (Fairmaire), E. riojana (Fairmaire) (new status), and E. zebra (Dohrn). This group is endemic of southern South America, inhabiting the Chaco biogeographical subregion, mainly in the arid northern areas of Argentina. Here we redefine the species of the bella group, consider new characters, illustrate the species in the group, provide maps of their distribution, and a key to identify them. 相似文献
11.
Despite their medical interest, the phylogeny of the snake family Viperidae remains inadequately understood. Previous studies have generally focused either on the pitvipers (Crotalinae) or on the Old World vipers (Viperinae), but there has been no comprehensive molecular study of the Viperidae as a whole, leaving the affinities of key taxa unresolved. Here, we infer the phylogenetic relationships among the extant genera of the Viperidae from the sequences of four mitochondrial genes (cytochrome b, NADH subunit 4, 16S and 12S rRNA). The results confirm Azemiops as the sister group of the Crotalinae, whereas Causus is nested within the Viperinae, and thus not a basal viperid or viperine. Relationships among the major clades of Viperinae remain poorly resolved despite increased sequence information compared to previous studies. Bayesian molecular dating in conjunction with dispersal-vicariance analysis suggests an early Tertiary origin in Asia for the crown group Viperidae, and rejects suggestions of a relatively recent, early to mid-Tertiary origin of the Caenophidia. 相似文献
12.
FERNANDA DE P. WERNECK LILIAN G. GIUGLIANO† ROSANE G. COLLEVATTI‡ GUARINO R. COLLI 《Molecular ecology》2009,18(2):262-278
The lizard genus Kentropyx (Squamata: Teiidae) comprises nine species, which have been placed in three species groups (calcarata group, associated to forests ecosystems; paulensis and striata groups, associated to open ecosystems). We reconstructed phylogenetic relationships of Kentropyx based on morphology (pholidosis and coloration) and mitochondrial DNA data (12S and 16S), using maximum parsimony and Bayesian methods, and evaluated biogeographic scenarios based on ancestral areas analyses and molecular dating by Bayesian methods. Additionally, we tested the life‐history hypothesis that species of Kentropyx inhabiting open ecosystems (under seasonal environments) produce larger clutches with smaller eggs and that species inhabiting forest ecosystems (under aseasonal conditions) produce clutches with fewer and larger eggs, using Stearns’ phylogenetic‐subtraction method and canonical phylogenetic ordination to take in to account the effects of phylogeny. Our results showed that Kentropyx comprises three monophyletic groups, with K. striata occupying a basal position in opposition to previous suggestions of relationships. Additionally, Bayesian analysis of divergence time showed that Kentropyx may have originated at the Tertiary (Eocene/Oligocene) and the ‘Pleistocene Refuge Hypothesis’ may not explain the species diversification. Based on ancestral reconstruction and molecular dating, we argued that a savanna ancestor is more likely and that historical events during the Tertiary of South America promoted the differentiation of the genus, coupled with recent Quaternary events that were important as dispersion routes and for the diversification at populational levels. Clutch size and egg volume were not significantly different between major clades and ecosystems of occurrence, even accounting for the phylogenetic effects. Finally, we argue that phylogenetic constraints and phylogenetic inertia might be playing essential roles in life history evolution of Kentropyx. 相似文献
13.
Several data partitions, including nuclear and mitochondrial gene sequences, chromosomes, isoenzymes, and morphological characters, were used to propose a new phylogeny and to test previously published hypotheses about the phylogenetic positions of basal clades of the lizard genus Sceloporus and the relationship of Sceloporus to the former genus "Sator". In accord with earlier studies, our results grouped "Sator" as internal to Sceloporus, and both support a hypothesis of transgulfian vicariance for the origin of the former genus "Sator" on islands in the Sea of Cortez. Robustness of support for internal nodes in our best tree was established though widely used indices (bootstrap proportions, decay values) but also through congruence among independent data partitions. Several deep nodes in the tree recovered by several methods, including equally weighted and differentially weighted parsimony and maximum likelihood models, are only weakly supported by the traditional indices. This methodological concordance is taken as evidence for insensitivity of the deep structure of the topology to alternative assumptions. 相似文献
14.
The land snail genus Solatopupa consists of six species and has a peri-Tyrrhenian distribution; most of the species have a very narrow range and all of them except one (Solatopupa cianensis, which inhabits porphyritic rocks) are strictly bound to calcareous substrates. One species (Solatopupa guidoni) is limited to Sardinia, Corsica, and Elba Island. Because the potential for dispersal of these snails is low, the insular range of this species has been traditionally related to the Oligocenic detachment of the Sardinia-Corsica microplate from the Iberian plate and its subsequent rotation towards the Italian peninsula. In this study, we used sequences of three mitochondrial and one nuclear gene to reconstruct the evolutionary history of the genus. Our phylogenetic results are consistent with the genetic relationships found using allozymes, but contrast with the phylogenetic hypotheses based on karyology and morphology. Molecular clock estimates indicate that the main cladogenetic events in the genus occurred between the middle Miocene and the middle-late Pliocene. Patterns of phylogenetic relationships and geological considerations suggest that the cladogenesis of the genus can be explained by vicariant (tectonic) processes. Our datings do not support a causal relation between the split of S. guidoni from its continental sister taxon and the initial phases of the detachment of the Corsica-Sardinia microplate from the mainland. On the contrary, time estimates coincide with the very last phase of detachment of the microplate (from 5 to 3 Myrs ago). Overall, our molecular clock estimates are in good agreement with the latest geological views on the tectonic evolution of the peri-Tyrrhenian area. 相似文献
15.
The genus Dalbergia with c. 250 species has a pantropical distribution. In spite of the high economic and ecological value of the genus, it has not yet been the focus of a species level phylogenetic study. We utilized ITS nuclear sequence data and included 64 Dalbergia species representative of its entire geographic range to provide a first phylogenetic framework of the genus to evaluate previous infrageneric classifications based on morphological data. The phylogenetic analyses performed suggest that Dalbergia is monophyletic and that it probably originated in the New World. Several clades corresponding to sections of these previous classifications are revealed. Taking into account that there is not a complete correlation between geography and phylogeny, and the estimation that the Dalbergia stem and crown clades are 40.4–43.3 mya and 3.8–12.7 mya, respectively, it is plausible that several long distance dispersal events underlie the pantropical distribution of the genus. 相似文献
16.
Hrbek T Küçük F Frickey T Stölting KN Wildekamp RH Meyer A 《Molecular phylogenetics and evolution》2002,25(1):125-137
Phylogenetic relationships of a subset of Aphanius fish comprising central Anatolia, Turkey, are investigated to test the hypothesis of geographic speciation driven by early Pliocene orogenic events in spite of morphological similarity. We use 3434 aligned base pairs of mitochondrial DNA from 42 samples representing 36 populations of three species and six outgroup species to test this hypothesis. Genes analyzed include those encoding the 12S and 16S ribosomal RNAs; transfer RNAs coding for valine, leucine, isoleucine, glutamine, methionine, tryptophan, alanine, asparagine, cysteine, and tyrosine; and complete NADH dehydrogenase subunits I and II. Distance based minimum evolution and maximum-likelihood analyses identify six well-supported clades consisting of Aphanius danfordii, Aphanius sp. aff danfordii, and four clades of Aphanius anatoliae. Parsimony analysis results in 462 equally parsimonious trees, all of which contain the six well supported clades identified in the other analyses. Our phylogenetic results are supported by hybridization studies (Villwock, 1964), and by the geological history of Anatolia. Phylogenetic relationships among the six clades are only weakly supported, however, and differ among analytical methods. We therefore test and subsequently reject the hypothesis of simultaneous diversification among the six central Anatolian clades. However, our analyses do not identify any internodes that are significantly better supported than expected by chance alone. Therefore, although bifurcating branching order is hypothesized to underlie this radiation, the exact branching order is difficult to estimate with confidence. 相似文献
17.
Origin, diversification, and historical biogeography of the genus Trachurus (Perciformes: Carangidae) 总被引:3,自引:0,他引:3
Cárdenas L Hernández CE Poulin E Magoulas A Kornfield I Ojeda FP 《Molecular phylogenetics and evolution》2005,35(2):496-507
We addressed phylogenetic relationships in the genus Trachurus using cytochrome b gene and D-loop sequences. The trees showed five groups: (1) the Southwest Pacific species (T. japonicus, T. novaezelandiae, and T. declivis); (2) The Mediterranean Sea and Eastern Atlantic species (T. mediterraneus); (3) The Atlantic Ocean species (T. lathami and T. trecae); (4) Eastern Atlantic species (T. trachurus and T. capensis); and (5) a group of highly mobile pelagic species, two from the Eastern Pacific (T. symmetricus and T. murphyi) and one from the Eastern Atlantic (T. picturatus). The phylogeny based on Cyt b, supports the molecular clock hypothesis and our results agree with the reported fossil indicating that the origin of this genus occur when the Thetys Sea closed (around 18.4 MYA). In addition, a very slow neutral substitution rate is reported identified only two periods of maximum diversification: the first occurring between 18.4 and 15.0 MYA and the second between 8.4 MYA and present day. 相似文献
18.
Members of the genus Limnodynastes are a prominent and widespread feature of the Australian frog fauna. Yet despite their potential to be informative about biogeographic history and mechanisms of speciation, the relationships among these taxa are not well known. We investigated phylogenetic relationships within the genus Limnodynastes via sequencing of mitochondrial (mt)DNA from current members of the genus Limnodynastes and the monotypic genus Megistolotis. a 450-bp fragment of the 16S rRNA gene and a 370-bp fragment of the protein-coding gene ND4 were used to infer a molecular phylogeny. We revise traditional species groupings and now recognize four species groups within Limnodynastes: the L. ornatus group (L. ornatus and L. spenceri), the L. peronii group (L. peronii, L. tasmaniensis, L. fletcheri, the L. depressus), the L. salmini group (L. salmini, L. convexiusculus, and L. lignarius), and the L. dorsalis group (L. dorsalis, L. terraereginae, L. dumerilii and L. interioris). The L. ornatus species group forms a highly distinctive clade that is a sister group to the other Limnodynastes groups. Pending broader phylogenetic studies it could be removed from the genus Limnodynastes. Our results concur with previous suggestions that Megistolotis lignarius is nested within Limnodynastes, and we therefore reclassify this species as Limnodynastes lignarius. Furthermore, specimens identified as L. depressus form a mtDNA lineage distinct from other species in the genus, confirming the validity of the species. Specimens of species from the L. dorsalis group (L. dorsalis, L. dumerilii, L. interioris, and L. terraereginae) are closely related such that L. dumerilii is paraphyletic with two other species. Finally, our study provides broad support for previous phylogenies based on microcomplement fixation. 相似文献
19.
Bell AS Sommerville C Tellervo Valtonen E 《International journal for parasitology》2001,31(8):833-842
Three nucleotide data sets, two nuclear (ribosomal internal transcribed spacer regions 1 and 2, ITS1 and ITS2) and one mitochondrial (cytochrome c oxidase subunit 1, CO1), were analysed using distance matrix and maximum likelihood methods to determine the inter-relationships amongst the four species attributed to the genus Ichthyocotylurus Odening, 1969. Sequence data obtained from all gene loci investigated supported the position of Ichthyocotylurus variegatus as a species discrete from Ichthyocotylurus platycephalus. Phylogenetic analyses yielded congruent trees, with I. variegatus isolates comprising a common clade to which I. platycephalus constitutes a sister taxon. Ichthyocotylurus erraticus and Ichthyocotylurus pileatus were found to demonstrate a similarly close inter-specific relationship. The greatest intra-generic divergence occurred in the CO1 region (16% variability), with resultant disparities in three to eight encoded amino acids. PCR amplification yielded multiple ITS1 products for all Ichthyocotylurus spp. Analyses of equivalent-sized amplicons showed 5.4% intra-generic variation and several point mutations between I. variegatus isolates from different geographical localities and from different piscine hosts. The ITS2 locus was extremely conserved, with less than 1% variation between species. No intra-specific variation was recorded for any CO1 or ITS2 sequences. 相似文献
20.
We describe a new lizard species of the genus Potamites from the montane forests of the Cordillera de Vilcabamba (Cusco region) and Apurimac River valley (Ayacucho region), between 1500 and 2000 meters of elevation, in southern Peru. The new species is distinguishable from all other species of the genus mainly by having highly keeled scattered scales on dorsum and females lacking femoral pores. 相似文献