首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apathya is a lacertid genus occurring mainly in south-east Turkey and its adjacent regions (part of Iran and Iraq). So far two morphological species have been attributed to the genus; A. cappadocica (with five subspecies, A. c. cappadocica, A. c. muhtari, A. c. schmidtlerorum, A. c. urmiana and A. c. wolteri) and A. yassujica. The first species occupies most of the genus’ distribution range, while A. yassujica is endemic of the Zagros Mountains. Here, we explored Apathya’s taxonomy and investigated the evolutionary history of the species by employing phylogenetic and phylogeographic approaches and using both mitochondrial (mtDNA) and nuclear markers. The phylogenetic relationships and the genetic distances retrieved, revealed that Apathya is a highly variable genus, which parallels its high morphological variation. Such levels of morphological and genetic differentiation often exceed those between species of other Lacertini genera that are already treated as full species, suggesting the necessity for a taxonomic revision of Apathya. The phylogeographical scenario emerging from the genetic data suggests that the present distribution of the genus was determined by a combination of dispersal and vicariance events between Anatolia and Southwest Asia dating back to the Miocene and continuing up to the Pleistocene. Key geological events for the understanding of the phylogeography of the genus are the movement of the Arabian plate that led to the configuration of Middle East (orogenesis of the mountain ranges of Turkey and Iran) and the formation of Anatolian Diagonal.  相似文献   

2.
Intra‐ and interspecific genetic diversity of the lizard species Plica plica (9 localities) and Plica umbra (19 localities) from the Brazilian Amazon was analysed using two mitochondrial (16S rDNA and CO1) and one nuclear (prolactin receptor – PRLR) genes. We generated a maximum‐likelihood and Bayesian hypotheses of phylogenetic relationships, and using the bPTP and ABGD lineage delimiting methods inferred the most likely number of lineages within each species. Both methods delimited five distinct lineages in Plica plica and six lineages within Plica umbra. The nominal subspecies of Plica umbra was comprised of one lineage, while Plica umbra ochrocollaris was comprised of five lineages. In majority of the cases, lineages were restricted to the interfluves of major Amazonian rivers, and different lineages occupied distinct areas of endemism. Phylogenetic relationships of the lineages are largely concordant with the hypothesized formation of the areas of endemism. The geographic structuring of the clades and the delimitation of these clades as distinct lineages suggest the possibility that these lineages represent species. If the observed diversity of lineages within the genus Plica is characteristic of squamate reptiles of the Amazon region, the diversity of squamates is grossly underestimated.  相似文献   

3.
Podarcis filfolensis is an endemic lizard from the Maltese archipelago. There is evidence of human-mediated decline and even extirpation of some insular populations of this species. However, information about the intraspecific genetic diversity and phylogeographic patterns of this species is limited. Here we analyze genetic markers from a multi-locus dataset (mtDNA, 2,533 bp; nuclear c-mos gene, 353 bp; 11 microsatellites) for individuals from extant populations of P. filfolensis. Despite generally low genetic variability, two main mitochondrial groupings were clearly identified. In general, individuals from the main island of Malta were genetically distinct from those from Gozo, Comino, Cominotto and Small Blue Lagoon Rock, and also from Linosa and Lampione individuals. Three genetic clusters were detected based on microsatellite data: one was found at higher frequency on Malta, while the other two included samples from the remaining islands, showing some concordance with the mtDNA pattern. A time-calibrated Bayesian tree for the principal mitochondrial lineages indicated strong statistical support for two P. filfolensis lineages that originated in the Pleistocene (105.4–869 Ka). We show that these lineages largely meet the criteria for recognition as evolutionary significant units despite some recent admixture (possibly due to recent translocations between islands). Human disturbance, low genetic variability, evidence of bottlenecks and extirpation on one island indicate that a thorough review of the current conservation status of P. filfolensis would be timely.  相似文献   

4.
We describe a new species of Alopoglossus from the Pacific slopes of the Andes in northern Ecuador based on morphological and molecular evidence. The new species differs most significantly from all other congeners in having a double longitudinal row of widened gular scales, lanceolate dorsal scales in transverse rows, 29–32 dorsal scales in a transverse row at midbody, and 4 longitudinal rows of ventrals at midbody. It is most similar in morphology to A. festae, the only species of Alopoglossus currently recognized in western Ecuador. We analyze the phylogenetic relationships among species of Alopoglossus based on the mitochondrial gene ND4. Cis-Andean [east of the Andes] and Trans-Andean [west of the Andes] species are nested in two separate clades, suggesting that the uplift of these mountains had an important effect in the diversification of Alopoglossus. In addition, we present an updated key to the species of Alopoglossus.  相似文献   

5.
6.
Establishing the ancestral area of a group of organisms is one of the central objectives of historical biogeography. I applied three methods of ancestral area analysis, Fitch optimization, weighted ancestral area analysis and dispersal-vicariance analysis (DIVA) to establish the ancestral area of the iguanian lizard genus Phymaturus . I then extended the analysis to hypothesize the ancestral area for Liolaemidae ( Ctenoblepharys , Liolaemus and Phymaturus ). The ancestral area for Phymaturus is Patagonia Central or Patagonia Central-Cordillera Andina and Valle Central. For Liolaemidae, the ancestral area is Patagonia Central-Coastal Perú, or Patagonia Central-Patagonia Occidental-Cordillera Andina and Valle Central-Coastal Perú. The ancestral area of Phymaturus is congruent with previous studies, but the inclusion of Ctenoblepharys poses some questions regarding the distribution of the ancestor of the family.  相似文献   

7.
The lizard genus Liolaemus and different clades within it have been the focus of several recent phylogenetic studies mainly based on morphology and mtDNA. Although there is general consensus for recognizing two clades (subgenera) within the genus, [Liolaemus (sensu stricto) and Eulaemus], phylogenetic relationships within each subgenus remain difficult to elucidate, given incomplete taxonomic sampling and large discordance between published studies. Here, new phylogenetic relationships for the Eulaemus subgenus are proposed based on the largest molecular data set ever used for this clade, which includes 188 individuals and 14 loci representing different parts of the genome (mtDNA, anonymous nuclear loci and nuclear protein‐coding loci). This data set was analysed using two species tree approaches (*beast and MDC). Levels of discordance among methods were found, and with previously published studies, but results are robust enough to propose new phylogenetic hypotheses for the Eulaemus clade. Specifically well‐resolved and well‐supported novel hypotheses are provided within the lineomaculatus section, and we formally recognize the zullyae clade, the sarmientoi clade and the hatcheri group. We also resolve species relationships within the montanus section, and particularly within the melanops series. We found discordance between mitochondrial and nuclear trees and discussed alternative hypotheses for the lineomaculatus and montanus sections, as well as the challenge in resolving phylogenetic relationships for large clades in general.  相似文献   

8.
Two monophyletic sister species of wall lizards inhabit the two main groups of Balearic Islands: Podarcis lilfordi from islets and small islands around Mallorca and Menorca and Podarcis pityusensis from Ibiza, Formentera and associated islets. Genetic diversity within the endangered P. lilfordi has been well characterized, but P. pityusensis has not been studied in depth. Here, 2430 bp of mtDNA and 15 microsatellite loci were analysed from Ppityusensis populations from across its natural range. Two main genetic groupings were identified, although geographical structuring differed slightly between the mtDNA and the nuclear loci. In general, individuals from islets/islands adjacent to the main island of Ibiza were genetically distinct from those from Formentera and the associated Freus islands for both mtDNA and the nuclear loci. However, most individuals from the island of Ibiza were grouped with neighbouring islets/islands for nuclear loci, but with Formentera and Freus islands for the mitochondrial locus. A time‐calibrated Bayesian tree was constructed for the principal mitochondrial lineages within the Balearics, using the multispecies coalescent model, and provided statistical support for divergence of the two main Ppityusensis lineages 0.111–0.295 Ma. This suggests a mid‐late Pleistocene intraspecific divergence, compared with an early Pleistocene divergence in P. lilfordi, and postdates some major increases in sea level between 0.4 and 0.6 Ma, which may have flooded Formentera. The program IMa2 provided a posterior divergence time of 0.089–0.221 Ma, which was similar to the multispecies coalescent tree estimate. More significantly, it indicated low but asymmetric effective gene copy migration rates, with higher migration from Formentera to Ibiza populations. Our findings suggest that much of the present‐day diversity may have originated from a late Pleistocene colonization of one island group from the other, followed by allopatric divergence of these populations. Subsequent gene flow between these insular groups seems likely to be explained by recent human introductions. Two evolutionary significant units can be defined for P. pityusensis but these units would need to exclude the populations that have been the subjects of recent admixture.  相似文献   

9.
The brush and tree lizards (Urosaurus) are a small clade of phrynosomatid lizards native to western North America. Though not as well known as their diverse sister clade, the spiny lizards (Sceloporus), some Urosaurus have nonetheless become model organisms in integrative biology. In particular, dramatic phenotypic and behavioral differences associated with specific mating strategies have been exploited to address a range of ecological and evolutionary questions. However, only two phylogenies have been proposed for the group, one of which is pre-cladistic and both based principally on morphological characters that might not provide robust support for relationships within the group. To help provide investigators working on Urosaurus with a robust phylogeny in which to frame ecological and evolutionary questions, we establish a molecular phylogeny for the group. We sampled three mitochondrial and three nuclear loci, and estimated phylogenetic relationships within Urosaurus using both maximum parsimony (MP) and Bayesian inference (BI), as well as a coalescent-based species tree approach. Finally, we used two methods of ancestral state reconstruction (ASR) to gain insight into the evolution of microhabitat preference and male display signals, traits that have been the focus of studies on Urosaurus. All reconstruction methods yield nearly the same ingroup topology that is concordant in most respects with the previous cladistic analysis of the group but with some significant differences; our data suggest the primary divergence in Urosaurus occurs between a clade endemic to the Pacific versant of Mexico and the lineages of Baja California and the southwestern US, rather than placing Urosaurus graciosus as the basal taxon and linking the Baja and Mexican endemics. We find support for a single transition to a saxicolous lifestyle within the group, and either the independent gain or loss of arboreality. The evolution of throat color patterns (i.e. dewlaps) appears complex, with multiple color morphs likely involving orange reconstructed as ancestral to the group and to most lineages, followed by a single transition to a fixed blue-throated morph in one clade. These results should provide a useful framework for additional comparative work with Urosaurus, and establish the phylogenetic context in which Urosaurus diversity arose.  相似文献   

10.
Multiple geological and climatic events have created geographical or ecological barriers associated with speciation events, playing a role in biological diversification in North and Central America. Here, we evaluate the influence of the Neogene and Quaternary geological events, as well as the climatic changes in the diversification of the colubrid snake genus Rhadinaea using molecular dating and ancestral area reconstruction. A multilocus sequence dataset was generated for 37 individuals of Rhadinaea from most of the biogeographical provinces where the genus is distributed, representing 19 of the 21 currently recognized species, and two undescribed species. Our analyses show that the majority of the Rhadinaea species nest in two main clades, herein identified as “Eastern” and “Southern”. These clades probably diverged from each other in the early Miocene, and their divergence was followed by 11 divergences during the middle to late Miocene, three divergences during the Pliocene, and six divergences in the Pleistocene. The ancestral distribution of Rhadinaea was reconstructed across the Sierra Madre del Sur. Our phylogenetic analyses do not support the monophyly of Rhadinaea. The Miocene and Pliocene geomorphology, perhaps in conjunction with climate change, appears to have triggered the diversification of the genus, while the climatic changes during the Miocene probably induced the diversification of Rhadinaea in the Sierra Madre del Sur. Our analysis suggests that the uplifting of the Trans‐Mexican Volcanic Belt and Chiapan–Guatemalan highlands in this same period resulted in northward and southward colonization events. This was followed by more recent, independent colonization events in the Pliocene and Pleistocene involving the Balsas Basin, Chihuahuan Desert, Pacific Coast, Sierra Madre Occidental, Sierra Madre Oriental, Sierra Madre del Sur, Trans‐Mexican Volcanic Belt, and Veracruz provinces, probably driven by the climatic fluctuations of the time.  相似文献   

11.
The biogeographical history of major groups of bees with worldwide distributions have often been explained through hypotheses based on Gondwanan vicariance or long distance dispersal events, but until recently these hypotheses have been very difficult, if not impossible, to distinguish. New fossil data, comprehensive information on Mesozoic and Cenozoic coastline positions and the availability of phylogenetically informative DNA markers now makes it feasible to test these hypotheses for some groups of bees. This paper presents historical biogeographical analyses of the genus Xylocopa Latreille, based on phylogenetic analyses of species belonging to 22 subgenera using molecular data from two nuclear genes, elongation factor‐1α (EF‐1α) and phosphoenolpyruvate carboxykinase (PEPCK), combined with previously published morphological and mitochondrial data sets. Phylogenetic analyses based on parsimony and likelihood approaches resulted in several groups of subgenera supported by high bootstrap values (>85%): an American group with the Oriental/Palaearctic subgenera Nyctomelitta and Proxylocopa as sister taxa; a geographically diverse group (Xylocopa s.l); and a group consisting of African and Oriental subgenera. The relationships among these three clades and the subgenus Perixylocopa remained unresolved. The Oriental subgenus Biluna was found to be the sister group of all other carpenter bee subgenera included in this study. Using a relaxed molecular clock calibrated using fossil carpenter bees, we show that the major splits in the carpenter bee phylogeny occurred well after the final breakup of Gondwanaland (the separation of South America and Africa, 100 Mya), but before important Miocene fusion events. Ancestral area analysis showed that the genus Xylocopa most likely had an Oriental‐Palaearctic origin and that the present world distribution of Xylocopa subgenera resulted mainly from independent dispersal events. The influence of Pleistocene glaciations on carpenter bee distributions is also discussed. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 77 , 249–266.  相似文献   

12.
Lack of resolution in a phylogenetic tree is usually represented as a polytomy, and often adding more data (loci and taxa) resolves the species tree. These are the ‘soft’ polytomies, but in other cases additional data fail to resolve relationships; these are the ‘hard’ polytomies. This latter case is often interpreted as a simultaneous radiation of lineages in the history of a clade. Although hard polytomies are difficult to address, model‐based approaches provide new tools to test these hypotheses. Here, we used a clade of 144 species of the South American lizard clade Eulaemus to estimate phylogenies using a traditional concatenated matrix and three species tree methods: *BEAST, BEST, and minimizing deep coalescences (MDC). The different species tree methods recovered largely discordant results, but all resolved the same polytomy (e.g. very short internodes amongst lineages and low nodal support in Bayesian methods). We simulated data sets under eight explicit evolutionary models (including hard polytomies), tested these against empirical data (a total of 14 loci), and found support for two polytomies as the most plausible hypothesis for diversification of this clade. We discuss the performance of these methods and their limitations under the challenging scenario of hard polytomies. © 2015 The Linnean Society of London  相似文献   

13.
We performed a phylogenetic analysis using nuclear (RAG‐1, RAG‐2) and mitochondrial (16S) markers, a statistical Bayesian reconstruction of ancestral distribution areas and a karyological analysis on most Malagasy species of the gekkonid genus Lygodactylus. The phylogenetic analysis largely confirms major basal branching pattern of previous molecular studies, but highlights significant differences concerning both the relationships between different species groups as well as those within groups. The biogeographic analysis supports a Malagasy origin of Lygodactylus, an oversea dispersal to continental Africa and a return to Madagascar. The L. madagascariensis group (also including a new candidate species identified herein) is the most basal clade in Lygodactylus, and the sister group of a clade with all the remaining species. The second most basal clade is the L. verticillatus group, placed as the sister group of a clade comprising African and Malagasy species. The sister lineage of the L. verticillatus group originated the African radiation through an oversea dispersal out of Madagascar. Eventually, the sister lineage of the L. capensis group originated secondary dispersals from Africa to Madagascar. In Madagascar, lineage diversification in different species groups mainly occurred from southern to northern and eastern regions. Dispersal, vicariance and paleoclimatic refugia probably played a relevant role in the evolutionary history of closely related taxa and in speciation mechanisms. The cytogenetic analysis evidenced a high karyotypic variability in Lygodactylus (from 2n = 34 to 2n = 40), which is at least partly consistent with the phylogenetic relationships and the composition of the various species group. Chromosome evolution occurred independently in different lineages, mainly through a reduction in the chromosome number and starting from a putative primitive karyotype of 2n = 40 with all telocentric elements.  相似文献   

14.
The genus Platycerus is a cool temperature zone taxon widely distributed in the Northern Hemisphere. In East Asia, 10, one and 28 species are known in Japan, Korea and China, respectively. Recent studies of Platycerus have revealed the divergence pattern in Japan and South Korea, but that of Chinese Platycerus is unknown. We conducted a phylogenetic and biogeographical study of Platycerus in East Asia, including China, using 68, 87 and 296 sequence data of the nuclear wingless gene, internal transcribed spacer (ITS) region and mitochondrial COI gene, respectively. Although the introgression of mitochondrial genes had been known in Japanese Platycerus, the essential contradiction was not recognized between the phylogenetic trees of nuclear genes and COI in Chinese Platycerus. In the COI tree, the Japanese clade and Asian continental clade diverged around 10.84 million years ago, and four major clades were recognized in the latter. For the shape of the posterolateral corner of the Platycerus pronotum, sharp (S)-type species are distributed in higher latitudinal and lower altitudinal areas than round (R)-type species in the Asian continent. S-type species have evolved from R-type species at least three times in more northerly areas, where the annual amplitude of temperature change is large. The genus Platycerus has been differentiated and speciated by a process unique to South Korea, Japan and China, according to regional topography. Thus, genetic differentiation and speciation in Platycerus are related to latitudinal and altitudinal gradients, as well as the site topographical profile and niche differentiation.  相似文献   

15.
A molecular phylogeny based on DNA/DNA hybridization revealed that the Sylvia-Parisoma complex is monophyletic and includes three main groups of species, the “mid-European” warblers, the genus Parisoma, and the “eu-Mediterranean” Sylvia species sensu stricto. The latter can be assigned to three main clusters, a “West-Mediterranean” group, a “Central-Mediterranean group”, and an “East-Mediterranean” group. The radiation of the whole complex is much more ancient than formerly believed. It started ca 12–13 Ma ago and the ancestors of the main extant groups differentiated during the Pliocene. Only speciation events within the “eu-Mediterranean” lineages occurred during the Pleistocene. The paleoclimatical and paleoecological history of the Mediterranean region is too complicated to provide any evidence for direct relationships between past events and evolutionary steps of these taxa which did not leave any reliable fossil record. However, some major speciation events may be related to well documented climatical crises as well as paleobotanical data. The largely man-induced extension of matorrals over several millenia presumably extended the range of several species that were formerly much more restricted, which complicates reconstruction of the spatio-temporal course of speciation.  相似文献   

16.
Aim Various data sets and methods of analysis were combined to produce the first comprehensive molecular phylogeny of the genus Tuber and to analyse its biogeography. Location Europe, North Africa, China, Asia, North America. Methods Phylogenetic relationships among Tuber species were reconstructed based on a data set of internal‐transcribed spacer (ITS) sequences and various phylogenetic inference methods, specifically maximum parsimony, Bayesian analysis and neighbour joining. Tajima’s relative rate test showed that Tuber 18S rRNA, 5.8S rRNA, 5.8S‐ITS2 rRNA and β‐tubulin sequences evolved in a clock‐like manner. These genes, combined or not, were employed for molecular clock estimates after construction of linearized trees using mega 3.1. We reconstructed ancestral areas in the Northern Hemisphere by means of a dispersal–vicariance analysis (diva 1.1) based on current distribution patterns of the genus Tuber determined from the literature. Results The resulting molecular phylogeny divided the genus Tuber into five distinct clades, in agreement with our previously published studies. The Puberulum, Melanosporum and Rufum groups were diversified in terms of species and geographical distribution. In contrast, the Aestivum and Excavatum groups were less diversified and were located only in Europe or North Africa. Using a global molecular clock analysis, we estimated the divergence times for the origin of the genus and for the origin of several groups. diva inferred nine dispersal events and suggested that the ancestor of Tuber was originally present in Europe or was widespread in Eurasia. Equally optimal distributions were obtained for several nodes, suggesting different possible biogeographical patterns. Main conclusions Our analyses identified several discrepancies with the classical taxonomy of the genus, and we propose a new phylogenetic classification. According to molecular clocks, the radiation of the genus Tuber could have started between 271 and 140 Ma. Used in combination with the results obtained from time divergence estimates, this allows us to propose two equally probable scenarios of intra‐ and inter‐continental diversification of the genus according to the geographic distribution of the most recent common ancestor in Europe or Eurasia. The biogeographical patterns imply intra‐continental dispersal events between Europe and Asia and inter‐continental dispersal events between North America and Europe or Asia, which are compatible with land connections during the Tertiary.  相似文献   

17.
Swallowtail butterflies are recognized as model organisms in ecology, evolutionary biology, genetics, and conservation biology but present numerous unresolved phylogenetic problems. We inferred phylogenetic relationships for 51 of about 205 species of the genus Papilio (sensu lato) from 3.3-Kilobase (kb) sequences of mitochondrial and nuclear DNA (2.3 kb of cytochrome oxidases I and II and 1.0 kb of elongation factor 1 alpha). Congruent phylogenetic trees were recovered within Papilio from analyses of combined data using maximum likelihood, Bayesian analysis, and maximum parsimony bootstrap consensus. Several disagreements with the traditional classification of Papilio were found. Five major previously hypothesized subdivisions within Papilio were well supported: Heraclides, Pterourus, Chilasa, Papilio (sensu stricto), and Eleppone. Further studies are required to clarify relationships within traditional "Princeps," which was paraphyletic. Several biologically interesting characteristics of Papilio appear to have polyphyletic origins, including mimetic adults, larval host associations, and larval morphology. Early diversification within Papilio is estimated at 55-65 million years ago based on a combination of biogeographic time constraints rather than fossils. This divergence time suggests that Papilio has slower apparent substitution rates than do Drosophila and fig-pollinating wasps and/or divergences corrected using best-fit substitution models are still being consistently underestimated. The amount of sequence divergence between Papilio subdivisions is equivalent to divergences between genera in other tribes of the Papilionidae, and between genera of moths of the noctuid subfamily Heliothinae.  相似文献   

18.
Erhard's wall lizard, Podarcis erhardii (Sauria: Lacertidae), is highly diversified in Greece and especially in the southern Aegean region. Out of the 28 recognized subspecies, 27 are found in Greece from the North Sporades island-complex in the North Aegean (grossly south of the 39th parallel) to the island of Crete in the South. The species exhibits great morphological and ecological plasticity and inhabits many different habitats from rocky islets and sandy shores to mountaintops as high as 2000m. By examining intraspecific variability at a segment of the mitochondrial gene cytochrome b we have found that that extant populations of P. erhardii are paraphyletic. Furthermore, we have found that subspecies previously defined on the basis of morphological characteristics do not correspond to different molecular phylogenetic clades, so that their status should be reconsidered. The DNA based biogeographical and phylogenetic history of Podarcis in Southern Greece is congruent with available paleogeographic data of the region, which supports the view that DNA sequences may be a useful tool for the study of palaeogeography.  相似文献   

19.
The lizard genus Liolaemus is endemic to temperate South America and includes 190 species. Liolaemus bibronii has a large geographic distribution and inhabits a great diversity of habitats, including the Monte, Steppe, and high Andean grassland environments. Liolaemus gracilis has a similar body size and shape to L. bibronii; the two are parapatrically distributed, and L. gracilis is also widely distributed. Here we use the mtDNA cytb sequence data of these two species to investigate lizard phylogeographic patterns in southern South America. L. bibronii is paraphyletic with respect to L. gracilis, Liolaemus ramirezae, Liolaemus robertmertensi and Liolaemus saxatilis; it is composed of many genetically different allopatric haploclades, some of which are reciprocally monophyletic. We also found evidence for introgression between L. bibronii and L. gracilis in the same area that introgression was hypothesized in the Liolaemus darwinii complex. We discuss the distribution of the major haploclades with inferences of their population histories, the concordance of these clades' distributions and histories with other lizard complexes studied with the same markers and methods, and taxonomic implications of these results.  相似文献   

20.
Previous studies based on different molecular datasets have generated conflicting topologies for Ranunculeae. Here, we revisit the phylogeny of Ranunculeae by analyzing the individual matK/trnK, psbJ-petA, and internal transcribed spacer (ITS) data, the combined matK/trnK, psbJ-petA, and ITS dataset, and the combinedrbcL, trnL-F, matK/trnK, psbJ-petA, and ITS dataset. Based on the tree-based comparisons, blast searches against NCBI of the sequences, and close examination of the alignment, we found that 10 psbJ-petA sequences previously used were questionable (erroneous or problematic) and responsible for previous conflicting topologies. After omitting these questionable sequences, we provide a new phylogeny for Ranunculeae, in which Beckwithia–Cyrtorhyncha, Kumlienia, andPeltocalathos were replaced. These new replacements are supported by corresponding morphological characters. Moreover, three previously proposed intercontinental disjunct distributions within Ranunculus were also refuted. In our framework, our divergence time and biogeographic analyses indicate that divergence time estimates and the ancestral areas reconstructed for 10 of the 15 nodes in the genus-level phylogeny were influenced by elimination of the questionable sequences. The most recent common ancestor of Ranunculeae was inferred to be present in Europe and North America during the late Eocene. Clades I and II began to diversify in Europe and North America, respectively, and subsequently migrated to other continents. This study shows that it is necessary to analyze individual chloroplast DNA region datasets separately to detect questionable sequences early in the study. The combined dataset including the questionable sequences resulted in an erroneous phylogenetic tree, and the use of this tree subsequently affected age estimates and biogeographic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号