首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a subfamily of Argonaute proteins, Piwi is poorly understood compared with Ago subfamily until recent discovery of Piwi protein interacting with piRNA. We did a large scale screening of insect genomes to identify piwi-like genes. Full or partial cDNA sequences were obtained by EST elongation and GENSCAN. We found that the exon numbers were totally different between vertebrates and invertebrates, approximately 20 exons in mammals but only 6-9 exons in insects. This infers either intron insertion or loss occurred during evolution. Characterized PAZ, c-terminal PIWI domains exist in almost all predicted Piwi-like proteins. We found six conserved motifs, which contain active catalytic triad "Asp-Asp-His/Lys" required for slicer activity. The expression of siwi1 and siwi2 in Bombyx mori were verified with RT-PCR. Phylogenetic tree inferred by Bayesian algorithm indicates invertebrate Piwi-like proteins are classified into three clades, of which Ago3 clade is closer to mammalian Piwi proteins.  相似文献   

2.
3.
Argonaute (AGO) effectors of RNA silencing bind small RNA (sRNA) molecules and mediate mRNA cleavage, translational repression, or epigenetic DNA modification. In many organisms, these targeting mechanisms are devolved to different products of AGO multigene families. To investigate the basis of AGO functional diversification, we characterized three closely related Arabidopsis thaliana AGOs (AGO4, AGO6, and AGO9) implicated in RNA-directed DNA methylation. All three AGOs bound 5′ adenosine 24-nucleotide sRNAs, but each exhibited different preferences for sRNAs from different heterochromatin-associated loci. This difference was reduced when AGO6 and AGO9 were expressed from the AGO4 promoter, indicating that the functional diversification was partially due to differential expression of the corresponding genes. However, the AGO4-directed pattern of sRNA accumulation and DNA methylation was not fully recapitulated with AGO6 or AGO9 expressed from the AGO4 promoter. Here, we show that sRNA length and 5′ nucleotide do not account for the observed functional diversification of these AGOs. Instead, the selectivity of sRNA binding is determined by the coincident expression of the AGO and sRNA-generating loci, and epigenetic modification is influenced by interactions between the AGO protein and the different target loci. These findings highlight the importance of tissue specificity and AGO-associated proteins in influencing epigenetic modifications.  相似文献   

4.
5.

Background

Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression levels of AGOs are greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved.

Results

We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors.

Conclusions

Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show that rapid evolution and likely loss of expression of miR168 isoforms in tobacco is related to the insertion of MITE-like transposons between miRNA and miRNA* sequences, a possible mechanism showing how miRNAs are lost in few plant lineages even though other close relatives have abundantly expressing miRNAs.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1049) contains supplementary material, which is available to authorized users.  相似文献   

6.
Phylogenetic relationships among the true finches (Fringillidae) have been confounded by the recurrence of similar plumage patterns and use of similar feeding niches. Using a dense taxon sampling and a combination of nuclear and mitochondrial sequences we reconstructed a well resolved and strongly supported phylogenetic hypothesis for this family. We identified three well supported, subfamily level clades: the Holoarctic genus Fringilla (subfamly Fringillinae), the Neotropical Euphonia and Chlorophonia (subfamily Euphoniinae), and the more widespread subfamily Carduelinae for the remaining taxa. Although usually separated in a different family-group taxon (Drepanidinae), the Hawaiian honeycreepers are deeply nested within the Carduelinae and sister to a group of Asian Carpodacus. Other new relationships recovered by this analysis include the placement of the extinct Chaunoproctus ferreorostris as sister to some Asian Carpodacus, a clade combining greenfinches (Carduelis chloris and allies), Rhodospiza and Rhynchostruthus, and a well-supported clade with the aberrant Callacanthis and Pyrrhoplectes together with Carpodacus rubescens. Although part of the large Carduelis-Serinus complex, the poorly known Serinus estherae forms a distinct lineage without close relatives. The traditionally delimited genera Carduelis, Serinus, Carpodacus, Pinicola and Euphonia are polyphyletic or paraphyletic. Based on our results we propose a revised generic classification of finches and describe a new monotypic genus for Carpodacus rubescens.  相似文献   

7.
In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro.  相似文献   

8.
Phylogenetic relationships among the Neotropical cichlid subfamily Geophaginae were examined using 136 morphological characters and a molecular dataset consisting of six mitochondrial and nuclear genes. Topologies produced by morphological and combined data under parsimony were contrasted, congruence among different partitions was analysed, and potential effects of character incongruence and patterns of geophagine evolution on phylogenetic resolution are discussed. Interaction of morphological and molecular characters in combined analysis produced better resolved and supported topologies than when either was analysed separately. Combined analyses recovered a strongly supported Geophaginae that was closely related to Cichlasomatinae. Within Geophaginae, two sister clades included all geophagine genera. Acarichthyini (Acarichthys+Guianacara) was sister to the ‘B clade’, which contained the ‘Geophagus clade’ (‘Geophagussteindachneri+Geophagus sensu stricto, and both sister to Gymnogeophagus) as sister to the ‘Mikrogeophagus clade’ (Mikrogeophagus+‘Geophagusbrasiliensis), and in turn, the Geophagus and Mikrogeophagus clades were sister to the crenicarine clade (Crenicara+Dicrossus) and Biotodoma. The second geophagine clade included the ‘Satanoperca clade’ (Satanoperca+Apistogramma and Taeniacara) as sister to the ‘Crenicichla clade’ (Crenicichla+Biotoecus). Several lineages were supported by unique morphological synapomorphies: the Geophaginae + Cichlasomatinae (5 synapomorphies), Geophaginae (1), Crenicichla clade (3), crenicarine clade (1), the sister relationship of Apistogramma and Taeniacara (4) and of Geophagus sensu stricto andGeophagussteindachneri (1), and the cichlasomine tribe Heroini (1). Incorporation of Crenicichla in Geophaginae reconciles formerly contradictory hypotheses based on morphological and molecular data, and makes the subfamily the most diverse and ecologically versatile clade of cichlids outside the African great lakes. Results of this study support the hypothesis that morphological differentiation of geophagine lineages occurred rapidly as part of an adaptive radiation.  相似文献   

9.
Phylogenetic relationships of the subfamily Combretoideae (Combretaceae) were studied based on DNA sequences of nuclear ribosomal internal transcribed spacer (ITS) regions, the plastid rbcL gene and the intergenic spacer between the psaA and ycf3 genes (PY-IGS), including 16 species of eight genera within two traditional tribes of Combretoideae, and two species of the subfamily Strephonematoideae of Combretaceae as outgroups. Phylogenetic trees based on the three data sets (ITS, rbcL, and PY-IGS) were generated by using maximum parsimony (MP) and maximum likelihood (ML) analyses. Partition-homogeneity tests indicated that the three data sets and the combined data set are homogeneous. In the combined phylogenetic trees, all ingroup taxa are divided into two main clades, which correspond to the two tribes Laguncularieae and Combreteae. In the Laguncularieae clade, two mangrove genera, Lumnitzera and Laguncularia, are shown to be sister taxa. In the tribe Combreteae, two major clades can be classified: one includes three genera Quisqualis, Combretum and Calycopteris, within which the monophyly of the tribe Combreteae sensu Engler and Diels including Quisqualis and Combretum is strongly supported, and this monophyly is then sister to the monotypic genus Calycopteris; another major clade includes three genera Anogeissus, Terminalia and Conocarpus. There is no support for the monophyly of Terminalia as it forms a polytomy with Anogeissus. This clade is sister to Conocarpus. Electronic Publication  相似文献   

10.
Argonaute 1 regulates the fate of germline stem cells in Drosophila   总被引:4,自引:0,他引:4  
The Argonaute-family proteins play crucial roles in small-RNA-mediated gene regulation. In Drosophila, previous studies have demonstrated that Piwi, one member of the PIWI subfamily of Argonaute proteins, plays an essential role in regulating the fate of germline stem cells (GSCs). However, whether other Argonaute proteins also play similar roles remains elusive. Here, we show that overexpression of Argonaute 1 (AGO1) protein, another subfamily (AGO) of the Argonaute proteins, leads to GSC overproliferation, whereas loss of Ago1 results in the loss of GSCs. Combined with germline clonal analyses of Ago1, these findings strongly support the argument that Ago1 plays an essential and intrinsic role in the maintenance of GSCs. In contrast to previous observations of Piwi function in the maintenance of GSCs, we show that AGO1 is not required for bag of marbles (bam) silencing and probably acts downstream or parallel of bam in the regulation of GSC fate. Given that AGO1 serves as a key component of the miRNA pathway, we propose that an AGO1-dependent miRNA pathway probably plays an instructive role in repressing GSC/cystoblast differentiation.  相似文献   

11.
Members of subfamily Gronovioideae are distinctive among Loasaceae in their androecial and gynoecial simplicity. The four genera of the subfamily differ, however, in chromosome number, floral novelties, and pollen exine sculpturing, which led to suggestions that the Gronovioideae were polyphyletic. Phylogenetic analyses based on sequences of the chloroplast gene matK and the internal transcribed spacer region (ITS) of nuclear rDNA have been conducted using parsimony and maximum likelihood methods to assess the monophyly of Gronovioideae and to determine the sister group relationships of gronovioid genera. The results show Gronovioideae are monophyletic and placed as the sister to Mentzelia. Within Gronovioideae, Petalonyx is sister to a clade consisting of Cevallia, Gronovia, and Fuertesia. Among the remaining Loasaceae, subfamily Mentzelioideae, as originally circumscribed, is paraphyletic. Subfamily Loasoideae is placed as the sister to the Gronovioideae-Mentzelia clade.  相似文献   

12.
分子系统学研究将传统梧桐科与锦葵科、木棉科和椴树科合并为广义锦葵科,并进一步分为9个亚科.然而,9个亚科之间的关系尚未完全明确,且梧桐亚科内的属间关系也未得到解决.为了明确梧桐亚科在锦葵科中的系统发育位置,厘清梧桐亚科内部属间系统发育关系,该研究对锦葵科8个亚科进行取样,共选取55个样本,基于叶绿体基因组数据,采用最大...  相似文献   

13.
14.
During a parasitological survey, Myxidium-like spores were identified in the gall bladders of marine fishes from Australian waters. This paper describes four novel species of Ellipsomyxa Køie, 2003, three novel species of Myxidium Bütschli, 1882 and six novel species of Zschokkella Auerbach, 1910 from teleosts from Australian waters using a combination of morphological, biological and molecular characters. Phylogenetic analyses showed a monophyletic relationship of all Ellipsomyxa spp. sequences with Sigmomyxa sphaerica (Thélohan, 1895) and Myxidium queenslandicus Gunter & Adlard, 2008 as sister species to the clade. The validity of genus Sigmomyxa Karlsbakk & Køie, 2012 is discussed. In phylogenetic analyses, the novel species of Myxidium fell within the ‘marine’ clade of Fiala (2006). However, the novel species of Zschokkella fell within the ‘freshwater’ clade of Fiala (2006) and formed a distinct clade with all other sequences of Zschokkella spp. from the gall bladder of marine fish and a sequence of a species of Myxobolus Bütschli 1882, also from the gall bladder of a marine fish. This is the second distinct marine lineage to emerge within the freshwater clade.  相似文献   

15.
16.
In the past decade, new strategies have been developed to control the Aedes aegypti (Diptera: Culicidae) mosquito vector, as well as a broad range of arboviral agents. Vector control surveillance programmes in Puerto Rico and Australia have implemented the Centers for Disease Control and Prevention autocidal gravid ovitrap (AGO), which has had an impact on vector density and, consequently, the epidemiology of arboviral infections. Colombia intends to establish the AGO as a new tool for the surveillance and control of the A. aegypti vector. AGOs were evaluated in a hyperendemic area for dengue virus during an 8-week period in Villavicencio city, eastern Colombia. The results indicated that the AGOs detect a high density of A. aegypti, with positive results for these traps of over 80% and an average catch of six individuals per trap per week. Acceptance of AGOs in the community exceeded 95%, and adherence was around 89%. This study's results demonstrate, for the first time in Colombia, that traps are a useful tool for the surveillance of A. aegypti. Future studies must consider the implementation of AGOs in the region.  相似文献   

17.
18.
19.
An antiviral defense role of AGO2 in plants   总被引:2,自引:0,他引:2  

Background

Argonaute (AGO) proteins bind to small-interfering (si)RNAs and micro (mi)RNAs to target RNA silencing against viruses, transgenes and in regulation of mRNAs. Plants encode multiple AGO proteins but, in Arabidopsis, only AGO1 is known to have an antiviral role.

Methodology/Principal Findings

To uncover the roles of specific AGOs in limiting virus accumulation we inoculated turnip crinkle virus (TCV) to Arabidopsis plants that were mutant for each of the ten AGO genes. The viral symptoms on most of the plants were the same as on wild type plants although the ago2 mutants were markedly hyper-susceptible to this virus. ago2 plants were also hyper-susceptible to cucumber mosaic virus (CMV), confirming that the antiviral role of AGO2 is not specific to a single virus. For both viruses, this phenotype was associated with transient increase in virus accumulation. In wild type plants the AGO2 protein was induced by TCV and CMV infection.

Conclusions/Significance

Based on these results we propose that there are multiple layers to RNA-mediated defense and counter-defense in the interactions between plants and their viruses. AGO1 represents a first layer. With some viruses, including TCV and CMV, this layer is overcome by viral suppressors of silencing that can target AGO1 and a second layer involving AGO2 limits virus accumulation. The second layer is activated when the first layer is suppressed because AGO2 is repressed by AGO1 via miR403. The activation of the second layer is therefore a direct consequence of the loss of the first layer of defense.  相似文献   

20.
The cystatin superfamily is comprised of cysteine proteinase inhibitors and encompasses at least 3 subfamilies: stefins, cystatins and kininogens. In this study, the platyhelminth cystatin superfamily was identified and grouped into stefin and cystatin subfamilies. The conserved domain of stefins (G, QxVxG) was observed in all members of platyhelminth stefins. The three characteristics of cystatins, the cystatin-like domain (G, QxVxG, PW), a signal peptide, and one or two conserved disulfide bonds, were observed in platyhelminths, with the exception of cestodes, which lacked the conserved disulfide bond. However, it is noteworthy that cestode cystatins had two tandem repeated domains, although the second tandem repeated domain did not contain a cystatin-like domain, which has not been previously reported. Tertiary structure analysis of Taenia solium cystatin, one of the cestode cystatins, demonstrated that the N-terminus of T. solium cystatin formed a five turn α-helix, a five stranded β-pleated sheet and a hydrophobic edge, similar to the structure of chicken cystatin. Although no conserved disulfide bond was found in T. solium cystatin, the models of T. solium cystatin and chicken cystatin corresponded at the site of the first disulfide bridge of the chicken cystatin. However, the two models were not similar regarding the location of the second disulfide bridge of chicken cystatin. These results showed that T. solium cystatin and chicken cystatin had similarities and differences, suggesting that the biochemistry of T. solium cystatin could be similar to chicken cystatin in its inhibitory function and that it may have further functional roles. The same results were obtained for other cestode cystatins. Phylogenetic analysis showed that cestode cystatins constituted an independent clade and implied that cestode cystatins should be considered to have formed a new clade during evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号