首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neurochemical Research - Diabetic neuropathy is one of the most common complications of diabetes mellitus. Excess glutamate release and oxidative stress are hypothesized to be involved in the...  相似文献   

2.
3.
各种疾病引起的神经系统的损伤或功能障碍致使全球数以百万计的人们患有神经性病理性疼痛。目前的方法对神经病理性疼痛的疗效不佳且有副作用,需要开发有效的治疗方法。近年来人们逐渐认识到,脊髓中胶质细胞(如小胶质细胞和星形胶质细胞)能通过释放强效的神经调质,如促炎细胞因子和趋化因子,在神经性病理性疼痛的产生和维持中起重要作用。近期的证据显示,趋化因子是疼痛调控中的新成员。该文综述了一些趋化因子和受体(如CCL2/CCR2、CXCL1/CXCR2、CX3CL1/CX3CR1、CCL21/CXCR3)作为神经元和胶质细胞相互调控的介质参与神经病理性疼痛的调节。靶向趋化因子介导的神经炎症反应将成为治疗神经病理性疼痛的新方向。  相似文献   

4.
目的:探究天麻素对Ⅱ型糖尿病神经病理性痛的镇痛作用以及天麻素对背根神经节Nav1.6通道的表达调控作用。方法:将60只雄性SD大鼠随机分为空白对照组、糖尿病组和天麻素处理组(10 mg·kg-1·d-1)。通过高脂饮食喂养4周,低剂量腹腔注射STZ(30 mg·kg-1)的方法构建Ⅱ型糖尿病神经病理性痛大鼠模型,利用痛行为学检测观察各组大鼠的机械刺激足缩反应阈值变化,采用免疫荧光组织化学及Western blot方法观察各组大鼠背根神经节上Nav1.6通道的表达变化。结果:与空白对照组相比,糖尿病模型大鼠出现显著的机械刺激疼痛阈值下降(P<0.05),且模型组大鼠背根神经节神经元上的Nav1.6通道表达上调(P<0.05)。与糖尿病组相比,连续腹腔注射天麻素3天、7天、14天后,模型动物的疼痛明显缓解(P<0.05),另外天麻素可以翻转背根神经节上Nav1.6通道的高表达(P<0.05)。结论:天麻素可能通过降低Nav1.6通道的表达来缓解Ⅱ型糖尿病神经病理性疼痛,从而为天麻素缓解糖尿病神经病理性疼痛提供新的理论依据。  相似文献   

5.
Bipolar disorder is characterized by a functional imbalance between hyperactive ventral/limbic areas and hypoactive dorsal/cognitive brain regions potentially contributing to affective and cognitive symptoms. Resting-state studies in bipolar disorder have identified abnormal functional connectivity between these brain regions. However, most of these studies used a seed-based approach, thus restricting the number of regions that were analyzed. Using data-driven approaches, researchers identified resting state networks whose spatial maps overlap with frontolimbic areas such as the default mode network, the frontoparietal networks, the salient network, and the meso/paralimbic network. These networks are specifically engaged during affective and cognitive tasks and preliminary evidence suggests that functional connectivity within and between some of these networks is impaired in bipolar disorder. The present study used independent component analysis and functional network connectivity approaches to investigate functional connectivity within and between these resting state networks in bipolar disorder. We compared 30 euthymic bipolar I disorder patients and 35 age- and gender-matched healthy controls. Inter-network connectivity analysis revealed increased functional connectivity between the meso/paralimbic and the right frontoparietal network in bipolar disorder. This abnormal connectivity pattern did not correlate with variables related to the clinical course of the disease. The present finding may reflect abnormal integration of affective and cognitive information in ventral-emotional and dorsal-cognitive networks in euthymic bipolar patients. Furthermore, the results provide novel insights into the role of the meso/paralimbic network in bipolar disorder.  相似文献   

6.
神经病理性疼痛对患者的生理和心理健康都有着极大的影响。近几年来的研究表明,外周神经炎症或损伤激活的小胶质细胞通过表达及释放一系列介质分子,在神经病理性疼痛的产生和传递通路中发挥重要的调制作用。激活的小胶质细胞与神经元之间信息交互传递从而影响痛敏行为的这一崭新模式极大地推进了人们对于疼痛的理解。同时也为以小胶质细胞作为靶点,开辟镇痛药物治疗的新方法提供了理论依据。  相似文献   

7.
钠通道NaV1.7是电压门控性钠通道的亚型之一。大多数钠离子通道NaV1.7表达在背根神经节(DRG)小C纤维的伤害性感受器上,具有缓慢开放和缓慢关闭失活的特点。它能够产生大量的斜坡电流,降低感觉神经元中动作电位产生的阈值,放大外来小的缓慢的去极化斜坡电流,从而增加神经元兴奋性,对疼痛的产生、传递、调节具有关键性作用。随着遗传学研究的不断深入,钠离子通道NaV1.7的功能获得性突变和功能缺失性突变,使其成为了新型镇痛疗法中一个的特别有吸引力的药物靶点,受到人们的广泛关注。而研究发现,NaV1.7通道在不同因素引起的神经病理性疼痛中通过不同途径提高神经元兴奋性,参与神经病理性疼痛,给NaV1.7选择性抑制剂研发带来了巨大阻碍。目前,虽然已有的NaV1.7选择性抑制剂具备有效镇痛作用,且无明显副作用或成瘾问题,但寻找NaV1.7选择性配体极其困难。此外,现有的NaV1.7选择性抑制剂也因神经病理性疼痛类型的不同在抑制效力、靶向性、安全性以及可行性等方面存在差异。提示寻找NaV1.7通道作用于不同神经病理性疼痛的普遍机制或NaV1.7通道特有的受体结合位点,可能是未来NaV1.7选择性抑制剂研发的主要方向。本文就NaV1.7通道在不同因素引起的神经病理性疼痛中的主要作用进行简要综述。  相似文献   

8.
目的:研究外源性神经调节蛋白1(neuregulin-1, NRG1)对糖尿病大鼠神经病理性疼痛的影响及可能的机制。方法:采用腹腔注射60 mg/kg链脲佐菌素(streptozocin,STZ)诱导糖尿病模型,造模成功的大鼠随机分为糖尿病组(D组)及NRG1静脉注射组(N组),另取同月龄大鼠为正常对照组(C组)。造模成功后两周N组大鼠通过尾静脉注射NRG1(10μg·kg-1·d-1)连续给药1周,C组及D组则予以生理盐水对照。每周测定大鼠机械性刺激缩足反应的阈值(Mechanical withdrawal threshold, MWT),诱导七周后采用Western-blotting方法测定脊髓NRG1, NGF, IL-1β和TNF-α的蛋白表达,并采用透射电镜观察大鼠腓肠神经的超微病理结构。结果:与糖尿病组相比,NRG1干预组的痛阈明显提高,腓肠神经病理学改变明显减轻。糖尿病组脊髓腰膨大NRG1、NGF、IL-1β和TNF-α含量分别为(0.337±0.092)、(0.371±0.060)、(0.619±0.089)、(0.752±0.071),与对照组相比均有显著性差异(P0.05);NRG1组NGF、IL-1β和TNF-α表达量分别为(0.576±0.061)、(0.375±0.029)、(0.524±0.056),与糖尿病组相比均有统计学差异(P0.05)。结论:静脉给予外源性NRG1能够预防和减轻糖尿病大鼠神经病理性疼痛,其机制可能与NRG1刺激NGF的生成及抑制炎性因子的释放有关。  相似文献   

9.
Oxidative stress is an important pathophysiological mechanism of many neurological diseases. Reactive oxygen and nitrogen species have been cited as molecules involved in the nociceptive process. In this study, rats were submitted to sciatic nerve transection (SNT) for induction of neuropathic pain, and enzyme activities of SOD and catalase as well as lipid peroxidation (LPO) were measured in the lumbosacral spinal cord. The results show that LPO was not changed after SNT. SOD activity was reduced 7 days after SNT, while the change in catalase activity occurred on the third and seventh days in both sham and SNT animals. Hyperalgesia in SNT group was detected at the same points in time. These results suggest that SNT was not a strong enough stimulus to deplete all antioxidant content in the spinal cord, since increase in LPO was not detected. However, the role of oxidative stress in nociception can not be excluded.  相似文献   

10.
目的:探讨普瑞巴林对神经病理性痛大鼠行为学的影响.方法:建立大鼠神经病理性痛模型(CCI模型),取40只雄性Sprague-Dawley大鼠随机分成4组,Ⅰ组为空白对照组,Ⅱ组为假手术组,Ⅲ组为CCI+普瑞巴林治疗组,Ⅲ组在术后第1夭开始灌胃给予3 mg/kg普瑞巴林,Ⅳ组为CCI手术组.分别于术前0 d及术后1 d、3 d、5 d、7 d、9 d、11 d、14d以热辐射法测定热缩足反射潜伏期(Paw withdrawal thermal latency, PWTL),观察神经病理性痛大鼠行为学变化.结果:术后14 d,Ⅳ组和Ⅰ、Ⅱ、Ⅲ组相比较,大鼠后爪的热痛敏阈值明显降低(P<0.01);Ⅰ、Ⅱ、Ⅲ组之间相比,大鼠后爪的热痛敏阚值差异没有显著性(P>0.05).结论:普瑞巴林可以缓解神经病理性痛大鼠的慢性神经病理痛行为学表现.  相似文献   

11.
International Journal of Peptide Research and Therapeutics - Voltage-gated sodium channel plays a critical role in pain sensation and has been considered as a potential target for the development...  相似文献   

12.

Background

Chronicity of pain is one of the most interesting questions in chronic pain study. Clinical and experimental data suggest that supraspinal areas responsible for negative emotions such as depression and anxiety contribute to the chronicity of pain. The amygdala is suspected to be a potential structure for the pain chronicity due to its critical role in processing negative emotions and pain information.

Objective

This study aimed to investigate whether amygdala or its subregions, the basolateral amygdala (BLA) and the central medial amygdala (CeA), contributes to the pain chronicity in the spared nerve injury (SNI)-induced neuropathic pain model of rats.

Methodology/Principal Findings

(1) Before the establishment of the SNI-induced neuropathic pain model of rats, lesion of the amygdaloid complex with stereotaxic injection of ibotenic acid (IBO) alleviated mechanical allodynia significantly at days 7 and 14, even no mechanical allodynia at day 28 after SNI; Lesion of the BLA, but not the CeA had similar effects; (2) however, 7 days after SNI when the neuropathic pain model was established, lesion of the amygdala complex or the BLA or the CeA, mechanical allodynia was not affected.

Conclusion

These results suggest that BLA activities in the early stage after nerve injury might be crucial to the development of pain chronicity, and amygdala-related negative emotions and pain-related memories could promote pain chronicity.  相似文献   

13.
目的:观察高迁移率族蛋白-1(high mobility group box-1,HMGB1)在糖尿病大鼠脊髓内的表达变化,探索其参与糖尿病性机械性痛觉过敏的具体机制,进一步阐明糖尿病性痛的机制,为糖尿病疼痛的治疗提供新的思路。方法:(1)36只SD大鼠随机分成6组(n=6),分别为正常大鼠组、糖尿病大鼠对照组、糖尿病7 d组、14 d、21 d和28 d组。通过Real-time PCR法检测各组大鼠脊髓内HMGB1 m RNA的表达情况。(2)24只SD大鼠分成4组(n=6)制作糖尿病大鼠模型,在造模后第28 d鞘内给予生理盐水、HMGB1的中和抗体10、30和100μg,检测糖尿病大鼠模型在各时间点的机械性缩足阈值。(3)30只SD大鼠随机分成5组(n=6),其中4组给予链尿佐菌素制作糖尿病大鼠模型。模型制作28 d后鞘内给予生理盐水、HMGB1的中和抗体10、30和100μg。另一组大鼠腹腔给予生理盐水,作为糖尿病大鼠的对照组。检测各组大鼠脊髓的TNF-α、IL-1β和IL-6 m RNA的表达。结果:(1)糖尿病大鼠模型制作21 d和28 d,脊髓内HMGB1 m RNA的表达显著上调(P0.05)。(2)糖尿病大鼠鞘内给予HMGB1中和抗体30和100μg后,可以在长达24 h的时间内扭转模型大鼠的机械性痛敏(P0.05)。(3)糖尿病大鼠造模28 d后,鞘内给予HMGB1的中和抗体30和100μg可以明显逆转糖尿病大鼠脊髓内的TNF-α、IL-1β和IL-6 m RNA的表达(P0.05)。结论:糖尿病大鼠脊髓内HMGB1显著上调,鞘内给予HMGB1的中和抗体可以通过抑制脊髓内TNF-α等细胞因子的表达而扭转糖尿病大鼠的机械性痛敏。以上结果提示,脊髓HMGB1可能参与了糖尿病机械性痛敏状态的维持过程。我们的研究对脊髓HMGB1参与糖尿病大鼠的疼痛的机制进行初步的探讨,为糖尿病性痛的治疗提供新的思路。  相似文献   

14.
Tumor necrosis factor-α plays important roles in immune system development, immune response regulation, and T-cell-mediated tissue injury. The present study assessed the net value of anti-tumor necrosis factor-α treatment in terms of functional recovery and inhibition of hypersensitivity after peripheral nerve crush injury. We created a right sciatic nerve crush injury model using a Sugita aneurysm clip. Animals were separated into 3 groups: the first group received only a skin incision; the second group received nerve crush injury and intraperitoneal vehicle injection; and the third group received nerve crush injury and intraperitoneal etanercept (6 mg/kg). Etanercept treatment improved recovery of motor nerve conduction velocity, muscle weight loss, and sciatic functional index. Plantar thermal and von Frey mechanical withdrawal thresholds recovered faster in the etanercept group than in the control group. On day 7 after crush injury, the numbers of ED-1-positive cells in crushed nerves of the control and etanercept groups were increased compared to that in the sham-treated group. After 21 days, ED-1-positive cells had nearly disappeared from the etanercept group. Etanercept reduced expression of interleukin-6 and monocyte chemotactic and activating factor-1 at the crushed sciatic nerve. These findings demonstrate the utility of etanercept, in terms of both enhancing functional recovery and suppressing hypersensitivity after nerve crush. Etanercept does not impede the onset or progression of Wallerian degeneration, but optimizes the involvement of macrophages and the secretion of inflammatory mediators.  相似文献   

15.
神经源性疼痛是严重困扰人类的临床问题之一。为了探索其发病机理及治疗方法,研究人员建立了多种神经损伤性疼痛模型,其中大鼠部分脊神经结扎,慢性压迫性神经损伤和L5/L6脊神经结扎的外周神经损伤的模型应用最为广泛。细胞模型也显示出了很好的应用前景,原代和永久性感觉神经元,作为研究疼痛发生和发展的分子机理,特别是神经递质的释放和信号转导的研究非常有用。  相似文献   

16.

Background

Age-related changes occur in both the peripheral and central nervous system, yet little is known about the influence of chronic pain on pain sensitivity in older persons. The aim of this study was to investigate pain sensitivity in elders with chronic neck pain compared to healthy elders.

Methods

Thirty elderly women with chronic neck pain and 30 controls were recruited. Measures of pain sensitivity included pressure pain thresholds, heat/cold pain thresholds and suprathreshold heat pain responses. The pain measures were assessed over the cervical spine and at a remote site, the tibialis anterior muscle.

Results

Elders with chronic neck pain had lower pressure pain threshold over the articular pillar of C5-C6 and decreased cold pain thresholds over the cervical spine and tibialis anterior muscle when compared with controls (p < 0.05). There were no between group differences in heat pain thresholds and suprathreshold heat pain responses (p > 0.05).

Conclusion

The presence of pain hypersensitivity in elderly women with chronic neck pain appears to be dependent on types of painful stimuli. This may reflect changes in the peripheral and central nervous system with age.  相似文献   

17.
Peripheral neuropathic pain typically results from trauma-induced nociceptive neuron hyperexcitability and their spontaneous ectopic activity. This pain persists until the trauma-induced cascade of events runs its full course, which results in complete tissue repair, including the nociceptive neurons recovering their normal biophysical properties, ceasing to be hyperexcitable, and stopping having spontaneous electrical activity. However, if a wound undergoes no, insufficient, or too much inflammation, or if a wound becomes stuck in an inflammatory state, chronic neuropathic pain persists. Although various drugs and techniques provide temporary relief from chronic neuropathic pain, many have serious side effects, are not effective, none promotes the completion of the wound healing process, and none provides permanent pain relief. This paper examines the hypothesis that chronic neuropathic pain can be permanently eliminated by applying platelet-rich plasma to the site at which the pain originates, thereby triggering the complete cascade of events involved in normal wound repair. Many published papers claim that the clinical application of platelet-rich plasma to painful sites, such as muscle injuries and joints, or to the ends of nerves evoking chronic neuropathic pain, a process often referred to as prolotherapy, eliminates pain initiated at such sites. However, there is no published explanation of a possible mechanism/s by which platelet-rich plasma may accomplish this effect. This paper discusses the normal physiological cascade of trauma-induced events that lead to chronic neuropathic pain and its eventual elimination, techniques being studied to reduce or eliminate neuropathic pain, and how the application of platelet-rich plasma may lead to the permanent elimination of neuropathic pain. It concludes that platelet-rich plasma eliminates neuropathic pain primarily by platelet- and stem cell-released factors initiating the complex cascade of wound healing events, starting with the induction of enhanced inflammation and its complete resolution, followed by all the subsequent steps of tissue remodeling, wound repair and axon regeneration that result in the elimination of neuropathic pain, and also by some of these same factors acting directly on neurons to promote axon regeneration thereby eliminating neuropathic pain.  相似文献   

18.
Neuropathic pain arises as a consequence of a lesion or a disease affecting the somatosensory system. This syndrome results from maladaptive changes in injured sensory neurons and along the entire nociceptive pathway within the central nervous system. It is usually chronic and challenging to treat. In order to study neuropathic pain and its treatments, different models have been developed in rodents. These models derive from known etiologies, thus reproducing peripheral nerve injuries, central injuries, and metabolic-, infectious- or chemotherapy-related neuropathies. Murine models of peripheral nerve injury often target the sciatic nerve which is easy to access and allows nociceptive tests on the hind paw. These models rely on a compression and/or a section. Here, the detailed surgery procedure for the "cuff model" of neuropathic pain in mice is described. In this model, a cuff of PE-20 polyethylene tubing of standardized length (2 mm) is unilaterally implanted around the main branch of the sciatic nerve. It induces a long-lasting mechanical allodynia, i.e., a nociceptive response to a normally non-nociceptive stimulus that can be evaluated by using von Frey filaments. Besides the detailed surgery and testing procedures, the interest of this model for the study of neuropathic pain mechanism, for the study of neuropathic pain sensory and anxiodepressive aspects, and for the study of neuropathic pain treatments are also discussed.  相似文献   

19.
Characteristics of HCN Channels and Their Participation in Neuropathic Pain   总被引:2,自引:0,他引:2  
Jiang YQ  Sun Q  Tu HY  Wan Y 《Neurochemical research》2008,33(10):1979-1989
Neuropathic pain is induced by the injury to nervous systems and characterized by hyperalgesia, allodynia and spontaneous pain. The underlying mechanisms include peripheral and central sensitization resulted from neuronal hyperexcitability. A number of ion channels are considered to contribute to the neuronal hyperexcitability. Here, we particularly concentrate on an interesting ion channel, hyperpolarization-activated cyclic nucleotide gated (HCN) channels. We overview its biophysical properties, physiological functions, followed by focusing on the current progress in the study of its role in the development of neuropathic pain. We attempt to provide a comprehensive review of the potential valuable target, HCN channels, in the treatment of neuropathic pain. Special issue article in honor of Dr. Ji-Sheng Han. Yu-Qiu Jiang, Qian Sun, and Hui-Yin Tu—contributed equally to this paper.  相似文献   

20.
Lamotrigine (LTG), a sodium and calcium channel blocker, has demonstrated efficacy for the treatment of neuropathic pain in multiple, randomized, controlled trials. However, its potential clinical applications in neuropathic pain are limited due to the risk of dose-dependent severe rashes associated with high dose and prompt dose escalation. Further, the poor pharmacokinetic profile due to non-selective distribution to organs other than brain reduces the efficacy of dosage regimen. Therefore, the aim of present investigation is to develop surface-engineered LTG nanoparticles (NPs) using transferrin and lactoferrin as ligand to deliver higher amount of drug to brain and improve the biodistribution and pharmacokinetic profile of drug with prolonged duration of action and reduced accumulation in non-target organs. The LTG NPs were prepared by nanoprecipitation and optimized by factorial design for high entrapment and optimized particle size. The optimized NPs were surface functionalized by conjugating with the lactoferrin (Lf) and transferrin (Tf) as ligands. The developed NPs were characterized for different physicochemical parameters and stability. The in vivo biodistribution showed preferential targeting to brain and reduced accumulation in non-target organs over a prolonged duration of time. Finally, partial sciatic nerve injury model was used to demonstrate the increased pharmacodynamic response as antinociceptive effect. Both biodistribution and pharmacodynamic study in mice confirmed that the approach used for LTG can help to increase clinical applications of LTG due to brain targeting and reduced side effects.KEY WORDS: brain targeting, factorial design, lactoferrin, lamotrigine, transferrin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号