首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高寒草地土壤掩埋对凋落物分解速率的影响大于氮素富集 由于高寒草地退化、鼠害严重、大风频繁等原因,凋落物被频繁掩埋在土壤中。但凋落物的位置变化和氮富集对高寒草原凋落物分解速率和养分动态影响的认识尚不清楚。为了研究凋落物 位置变化(地表、掩埋10 cm和悬空60 cm)和氮富集对高寒草原优势植物凋落物分解的影响,本研究依托2009年在新疆天山巴音布鲁克高寒草原设置的长期模拟氮沉降研究平台,以对照和氮富集处理样方的优势植物羊茅(Festuca ovina)和赖草(Leymus tianschanicus)凋落物为试验材料,测定分解过程中凋落物质量损失和碳氮磷含量的变化特征。研究结果表明,掩埋凋落物分解速率显著快于地表凋落物,悬空处理凋落物分解速率慢于地表凋落物。氮富集显著影响凋落物质量,进而影响凋落物分解。而凋落物质量残留在对照与氮富集土壤掩埋之间无显著差异。这些结果表明,氮富集通过凋落物质量而不是通过土壤环境因素,影响短期凋落物分解。不同处理的所有试验凋落物均有碳和磷的释放现象。对照处理的凋落物,凋落物氮以累积为主,而氮富集处理的凋落物,凋落物氮以释放为主。这表明凋落物分解可能受到氮元素限制,氮富集改变了凋落物分解调控的氮循环过程。本研究提供了直接证据,掩埋处理的凋落物有更快的质量损失和碳元素释放,土壤掩埋是旱地凋落物分解速率比模型预测的快的一个候选解释。  相似文献   

2.
Ferreira V  Gulis V  Graça MA 《Oecologia》2006,149(4):718-729
We assessed the effect of whole-stream nitrate enrichment on decomposition of three substrates differing in nutrient quality (alder and oak leaves and balsa veneers) and associated fungi and invertebrates. During the 3-month nitrate enrichment of a headwater stream in central Portugal, litter was incubated in the reference site (mean NO3-N 82 μg l−1) and four enriched sites along the nitrate gradient (214–983 μg NO3-N l−1). A similar decomposition experiment was also carried out in the same sites at ambient nutrient conditions the following year (33–104 μg NO3-N l−1). Decomposition rates and sporulation of aquatic hyphomycetes associated with litter were determined in both experiments, whereas N and P content of litter, associated fungal biomass and invertebrates were followed only during the nitrate addition experiment. Nitrate enrichment stimulated decomposition of oak leaves and balsa veneers, fungal biomass accrual on alder leaves and balsa veneers and sporulation of aquatic hyphomycetes on all substrates. Nitrate concentration in stream water showed a strong asymptotic relationship (Michaelis–Menten-type saturation model) with temperature-adjusted decomposition rates and percentage initial litter mass converted into aquatic hyphomycete conidia for all substrates. Fungal communities did not differ significantly among sites but some species showed substrate preferences. Nevertheless, certain species were sensitive to nitrogen concentration in water by increasing or decreasing their sporulation rate accordingly. N and P content of litter and abundances or richness of litter-associated invertebrates were not affected by nitrate addition. It appears that microbial nitrogen demands can be met at relatively low levels of dissolved nitrate, suggesting that even minor increases in nitrogen in streams due to, e.g., anthropogenic eutrophication may lead to significant shifts in microbial dynamics and ecosystem functioning. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

3.
采用分解网袋法,在古尔班通古特沙漠南缘设置对照N0(0 g N·m-2·a-1)、N5(5 g N·m-2·a-1)、N10(10 g N·m-2·a-1)和N20(20 g N·m-2·a-1)4个施N处理,研究外源N添加对多枝柽柳、盐角草及两者混合凋落物分解过程及养分释放的影响,分析氮沉降对荒漠生态系统凋落物分解的影响。结果表明: 各物种凋落物的分解速率存在显著差异,经过345 d的分解,多枝柽柳、盐角草及混合物在不同N处理间的分解速率分别为0.64~0.70、0.84~0.99和0.71~0.81 kg·kg-1·a-1。凋落物分解过程中,N、P均表现为养分的直接释放,试验结束时,N0、N5、N10和N20处理单种凋落物及其混合物N分别释放60.6%~67.4%、56.7%~62.6%、57.4%~62.3%、46.8%~63.0%,P分别释放51.9%~77.9%、59.9%~74.7%、53.0%~79.9%、52.3%~76.4%。N处理对单种凋落物及其混合物的分解影响不显著,但各种凋落物的养分动态对N添加的响应不同,N处理抑制了盐角草N、P释放及混合凋落物P释放,而对多枝柽柳无影响。在温带荒漠,适量的N输入对凋落物分解速率影响不大,但可能会延缓个别物种养分向土壤系统的归还。  相似文献   

4.

Background and aims

Litter decomposition is a critical process in terrestrial ecosystems and, since in natural conditions plant litter occurs in mixtures, understanding the interactive effects of mixed litter is of great ecological relevance. In this context, we test the hypothesis that N transfer between high quality litter to N-poor substrates are at the base of synergistic interactions, positively affecting litter decay rate, temperature sensitivity, and changes of organic C quality.

Methods

We carried out a manipulative experiment using four organic substrates, encompassing a wide range of biochemical quality (Hedera helix and Quercus ilex leaf litter, cellulose strips and woody sticks), each decomposing either separately or in matched pair mixtures for 360 days. Organic substrates were characterized for mass loss, C and N content and by 13C CPMAS NMR to assess biochemical quality changes.

Results

Litter response to mixing was related to the biochemical quality of the components in the mixture: additive when substrates with similarly high (H. helix and Q. ilex) or low (cellulose and wood) N content were paired, but synergistic when substrates with contrasting N content were associated (either of the two leaf litters with either cellulose or wood). Overall, no antagonist effects were observed in this experiment. Interestingly, decomposition of cellulose and wood showed an higher temperature sensitivity, compared to monospecific substrates, when paired with N rich materials. Significant N transfer was found from N rich litter to N poor substrates and 13C CPMAS NMR showed rapid changes of C quality of cellulose and wood sticks only when paired with N rich litter.

Conclusions

Our findings support the hypothesis that mixing litters of different quality, with quality expressed in terms of C/N ratio and N content, increases decomposition rate and temperature sensitivity of the lower quality substrates.  相似文献   

5.
Summary Myrica gale litter deposition and decomposition were studied in a central Massachusetts peatland to determine the amount of N made available to the ecosystem by these processes. Leaf litter added 114–140 g biomass m–2 annually and contained 2.12–2.59 g N m–2 returning about 70% as much N to the ecosystem as was fixed annually byMyrica gale. During the first five years of decomposition, the leaf liter lost only 40% of its initial biomass and released only 10% of its initial N content. About 60% of its original N mass was still present when the litter reached the permanently waterlogged zone, and thus was effectively lost to the vegetation. The low decomposition rate was due primarily to the chemical content of the litter because similarly low rates were observed in an upland forest where the native litter decayed rapidly. The initial lignin content (40%) ofM. gale litter may be largely responsible for its slow decomposition in spite of its relatively high (1.69%) initial N content.M. gale litter decayed substantially more slowly and had a much higher initial lignin content than the litter of other woody N2-fixing plants which have been examined.  相似文献   

6.

Background and aims

Precipitation and nitrogen (N) deposition are predicted to increase in northern China. The present paper aimed to better understand how different dominant species in semi-arid grasslands in this region vary in their litter decomposition and nutrient release responses to increases in precipitation and N deposition.

Methods

Above-ground litter of three dominant species (two grasses, Agropyron cristatum and Stipa krylovii, and one forb, Artemisia frigida) was collected from areas without experimental treatments in a semi-arid grassland in Inner Mongolia. Litter decomposition was studied over three years to determine the effects of water and N addition on litter decomposition rate and nutrient dynamics.

Results

Litter mass loss and nutrient release were faster for the forb species than for the two grasses during decomposition. Both water and N addition increased litter mass loss of the grass A. cristatum, while the treatments showed no impacts on that of the forb A. frigida. Supplemental N had time-dependent, positive effects on litter mass loss of the grass S. krylovii. During the three-year decomposition study, the release of N from litter was inhibited by N addition for the three species, and it was promoted by water addition for the two grasses. Across all treatments, N and potassium (K) were released from the litter of all three species, whereas calcium (Ca) was accumulated. Phosphorus (P) and magnesium (Mg) were released from the forb litter but accumulated in the grass litter after three years of decomposition.

Conclusions

Our findings revealed that the litter decomposition response to water and N supplementation differed among dominant plant species in a semi-arid grassland, indicating that changes in dominant plant species induced by projected increases in precipitation and N deposition are likely to affect litter decomposition, nutrient cycling, and further biogeochemical cycles in this grassland. The asynchronous nutrient release of different species’ litter found in the present study highlights the complexity of nutrient replenishment from litter decomposition in the temperate steppe under scenarios of enhancing precipitation and N deposition.
  相似文献   

7.
氮沉降对森林凋落物分解的影响
  总被引:11,自引:0,他引:11  
方华  莫江明 《生态学报》2006,26(9):3127-3136
氮沉降增加作为全球变化的重要现象之一,已经并将继续对森林凋落物分解产生影响.综述了国内外氮沉降对森林凋落物分解影响及其机理的研究现状.氮沉降对凋落物分解的影响可分为直接影响和间接影响.氮沉降通过影响森林地被物组成和凋落物化学成分,间接影响凋落物分解.氮沉降对凋落物分解的直接影响表现为促进、无影响和抑制3种效果.分析了产生以上影响效果的作用机理,介绍了氮沉降对森林凋落物分解影响的研究方法,探讨了目前研究存在的问题,讨论了未来该方面研究的重点和方向.  相似文献   

8.
9.
Macrophyte decomposition is a critical process that affects carbon and nutrient cycling, and energy flow, although the majority of the details involved in the process remain unclear. For the present study, a litter bag experiment was conducted to investigate the effects of sediment-borne nutrient and litter quality on the decomposition rates and nutrient release of four macrophyte life forms (emergent macrophyte: Phragmites australis, free-floating macrophyte: Hydrocharis dubia, floating-leaved macrophyte: Nymphoides peltata, submerged macrophyte: Ceratophyllum demersum), and a species mixture. Our results indicated that litter quality significantly influenced macrophyte decomposition and nutrient release. High-quality litter species (high initial nitrogen and phosphorus contents, as well as low C:N, C:P, and N:P ratios) decomposed more rapidly than low-quality litter species, and the initial C:N and C:P ratios, rather than the initial N and P contents, were effective indicators of the decomposition rate of macrophytes. Sediment-borne nutrients had little effect on the decomposition rate, yet a strong effect on the release of N and P, although the interactions between litter quality and sediment-borne nutrients significantly affected the decomposition rate. Three-way ANOVA analysis revealed that the litter quality imparted a more potent effect on the macrophyte decomposition rate and release of N and P than sediment-borne nutrients. These results implied that litter quality interacts with sediment-borne nutrients and may control macrophyte decomposition in shallow lakes.  相似文献   

10.
红松混交林凋落物氮储量及分解释放对土壤氮的影响   总被引:3,自引:0,他引:3  
2012年5—10月,采用直接收获法,研究了小兴安岭地区云冷杉红松混交林和枫桦红松混交林两种林型凋落物的未分解层(L层)、半分解层(F层)和腐殖质层(H层)以及土壤表层(S层)氮储量及凋落物分解释放对土壤氮影响。结果表明:研究期间两种林型凋落物现存量变化范围分别为19.43~27.25和21.25~24.28 t·hm-2,氮储量变化范围分别为287.21~418.22和274.81~351.21 kg·hm-2,各层氮含量大小次序均为LFHS;云冷杉红松混交林各层凋落物现存量及其氮储存量5月和9月达到峰值,每月氮储量从L~H层均增加,凋落物分解释放氮在F和H层易富集,输入到土壤中较少;枫桦红松混交林各层凋落物现存量及其氮储量5月和10月达到峰值,每月氮储量从L~H层均减少,氮在凋落物各层中均易迁移,输入到土壤中的氮比云冷杉红松混交林多;两种林型L、F、H层凋落物现存量以及H层氮含量与S层氮含量之间,L和F层凋落物现存量与H层氮含量之间均呈显著正相关。  相似文献   

11.
Peter S. Homann 《Plant and Soil》2012,355(1-2):251-263

Background and aims

General theory of forest floor dynamics indicates convergence of properties during detrital decomposition. This study examined the hypothesis that nutrient stoichiometry, i.e. the relative amounts of nutrients, converges during litter decomposition.

Methods

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and red alder (Alnus rubra Bong.) foliar litters that decomposed in their respective forests were analyzed for N, P, Ca, Mg, K, S, Mn, Fe, Zn, and Cu. A novel approach quantified the stoichiometric difference as the angle between nutrient vectors. The approach was also used to synthesize data from 11 previously published studies representing a broad array of litter types and locations.

Results

The stoichiometries of the Douglas-fir and red alder litters converged during the first 2 years of decomposition, but diverged in the subsequent 4 years. This temporal trajectory was explained by two competing sets of processes: stoichiometric convergence occurs when different litters decompose in the same environment, and divergence occurs when the same litter decomposes in different environments. Manganese, Fe, and Ca were important contributors to stoichiometric differences.

Conclusions

Stoichiometric convergence processes often dominate over divergence processes. Consideration of multi-nutrient stoichiometries may enhance the understanding of the functions of litter, including rates of decomposition and relative rates at which nutrients are released.  相似文献   

12.
13.
利用原位分解袋法研究了华西雨屏区苦竹(Pleioblastus amarus)和撑绿杂交竹(Bambusa pervariabilis × Dendrocala mopsi)人工林几种凋落物组分在模拟氮沉降下分解过程中养分释放状态,试验周期为2 a。氮沉降水平分别为对照(CK, 0 g · m-2 · a-1)、低氮(5 g · m-2 · a-1)、中氮(15 g · m-2 · a-1)和高氮(30 g · m-2 · a-1),每月下旬定量地对各处理施氮(NH4NO3)。结果表明,苦竹林和杂交竹林凋落物主要由凋落叶、凋落箨和凋落枝组成,其中凋落叶约占80%;两个竹种凋落物在分解过程中养分元素释放的种间差异主要与初始养分元素含量有关;凋落物养分元素初始含量对元素释放模式和最终净释放率的大小具有重要的决定作用;目前,这两种竹林生态系统土壤氮输入主要以大气氮沉降(8.24 g · m-2 · a-1)为主,同时凋落物氮输入(苦竹和杂交竹林分别为1.93,5.07 g · m-2 · a-1)也是一个重要途径;模拟氮沉降对苦竹凋落物碳、磷、钾、钙元素和杂交竹凋落物碳、氮、磷、钾、钙、镁元素释放的抑制作用较弱,处理与对照之间元素总释放率差异一般小于10%;氮沉降显著抑制了苦竹林凋落物氮元素释放,减小幅度为19.0%-27.2%,但由于氮沉降增加对土壤肥力的直接改良作用,氮沉降的增加并不会因为凋落物分解速率的降低造成植物生长所需养分供应的减少;从短期来看,在氮沉降继续增加的情况下,该地区这类竹林生态系统的碳吸存能力仍可能会因为N沉降对植物生长的促进作用而增加。  相似文献   

14.
Synergistic effects on decomposition in litter mixtures have been suggested to be due to the transfer of nitrogen from N‐rich to N‐poor species. However, the dominant pathway and the underlying mechanisms remain to be elucidated. We conducted an experiment to investigate and quantify the control mechanisms for nitrogen transfer between two litter species of contrasting nitrogen status (15N labeled and unlabeled Fagus sylvatica and Fraxinus excelsior) in presence and absence of micro‐arthropods. We found that 15N was predominantly transferred actively aboveground by saprotrophic fungi, rather than belowground or passively by leaching. However, litter decomposition remained unaffected by N‐dynamics and was poorly affected by micro‐arthropods, suggesting that synergistic effects in litter mixtures depend on complex environmental interrelationships. Remarkably, more 15N was transferred from N‐poor beech than N‐rich ash litter. Moreover, the low transfer of 15N from ash litter was insensitive to destination species whereas the transfer of 15N from labeled beech litter to unlabeled beech was significantly greater than the amount of 15N transferred to unlabeled ash suggesting that processes of nitrogen transfer fundamentally differ between litter species of different nitrogen status. Microbial analyses suggest that nitrogen of N‐rich litter is entirely controlled by bacteria that hamper nitrogen capture of microbes in the environment supporting the source‐theory. In contrast, nitrogen of N‐poor fungal dominated litter is less protected and transferable depending on the nitrogen status and the transfer capacity of the microbial community of the co‐occurring litter species supporting the gradient‐theory. Thus, our results challenge the traditional view regarding the role of N‐rich litter in decomposing litter mixtures. We rather suggest that N‐rich litter is only a poor nitrogen source, whereas N‐poor litter, can act as an important nitrogen source in litter mixtures. Consequently both absolute and relative differences in initial litter C/N ratios of co‐occurring litter species need to be considered for understanding nitrogen dynamics in decomposing litter mixtures.  相似文献   

15.
16.
17.
A frog endemic to Puerto Rico, Eleutherodactylus coqui, invaded Hawaii in the late 1980s, where it can reach densities of 50,000 individuals ha−1. Effects of this introduced insectivore on invertebrate communities and ecosystem processes, such as nutrient cycling, are largely unknown. In two study sites on the Island of Hawaii, we studied the top-down effects of E. coqui on aerial, herbivorous, and leaf litter invertebrates; herbivory, plant growth, and leaf litter decomposition rates; and leaf litter and throughfall chemistry over 6 months. We found that E. coqui reduced all invertebrate communities at one of the two study sites. Across sites, E. coqui lowered herbivory rates, increased NH4+ and P concentrations in throughfall, increased Mg, N, P, and K in decomposing leaf litter, increased new leaf production of Psidium cattleianum, and increased leaf litter decomposition rates of Metrosideros polymorpha. In summary, E. coqui effects on invertebrates differed by site, but E. coqui effects on ecosystem processes were similar across sites. Path analyses suggest that E. coqui increased the number of new P. cattleianum leaves and leaf litter decomposition rates of M. polymorpha by making nutrients more available to plants and microbes rather than through changes in the invertebrate community. Results suggest that E. coqui in Hawaii has the potential to reduce endemic invertebrates and increase nutrient cycling rates, which may confer a competitive advantage to invasive plants in an ecosystem where native species have evolved in nutrient-poor conditions.  相似文献   

18.
Ge  Jielin  Berg  Björn  Xie  Zongqiang 《Plant and Soil》2017,419(1-2):363-376
Plant and Soil - Leaf habit of tree species (evergreen versus deciduous) is proposed to be an important determinant of leaf litter decomposition, but it remains largely understudied as to how...  相似文献   

19.
氮、磷养分有效性对森林凋落物分解的影响研究进展   总被引:5,自引:0,他引:5  
通过对相关研究文献的综述结果表明,氮(N)和磷(P)是构成蛋白质和遗传物质的两种重要组成元素,限制森林生产力和其他生态系统过程,对凋落物分解产生深刻影响。大量的凋落物分解试验发现在土壤N有效性较低的温带和北方森林,凋落物分解速率常与底物初始N浓度、木质素/N比等有很好的相关关系,也受外源N输入的影响;而在土壤高度风化的热带亚热带森林生态系统中,P可能是比N更为重要的分解限制因子。然而控制试验表明,N、P添加对凋落物分解速率的影响并不一致,既有促进效应也有抑制效应。为了深入揭示N、P养分有效性对凋落物分解的调控机制,"底物的C、N化学计量学"假说、"微生物的N开采"假说以及养分平衡的理论都常被用于解释凋落物分解速率的变化。由于微生物分解者具有较为稳定的C、N、P等养分需求比例,在不同的养分供应的周围环境中会体现出不同的活性,某种最缺乏的养分可能就是分解的最重要限制因子。未来的凋落物分解研究,应延长实验时间、加强室内和野外不同条件下的N、P等养分添加控制试验,探讨驱动分解进程的微生物群落结构和酶活性的变化。  相似文献   

20.
通过原位进行了对照(CK)、低氮(LN,50kgN.hm-2.a-1)、中氮(MN,100kgN.hm-2.a-1)和高氮(HN,150kgN.hm-2.a-1)处理,研究了川西南天然常绿阔叶林凋落物分解及养分释放对模拟N沉降的响应.结果表明:凋落物分解95%需要4.72~6.33年,分解率最高的为CK,最低的为HN.经过365d,各处理的分解率均低于CK,仅HN与CK间差异显著(P<0.05);C残留率均高于CK;N和K残留率均显著高于CK(P<0.05);P残留率均高于CK,仅LN与CK间差异显著(P<0.05).各处理凋落物的C/N升高3.9%~23.7%.凋落物分解过程中N元素的迁移模式为富集-释放,C、P和K元素则表现为直接释放.N沉降对凋落物中养分元素的释放及木质素和纤维素的降解均具有抑制作用.随着处理时间的延长,N沉降对川西南常绿阔叶林凋落物分解的影响从正效应转向负效应,且负效应随沉降浓度的增加而加强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号