首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Excess oxidant can promote inflammatory responses. Moreover, chronic inflammation accompanied by oxidative stress is connected various steps involved in many diseases. From the aspect, we investigated an antioxidant peptide to prevent inflammatory response against oxidant overexpression. To prepare the peptide, eight proteases were employed for enzymatic hydrolysis, and the antioxidant properties of the hydrolysates were investigated using free radical scavenging activity by electron spin resonance (ESR) spectrometry. Papain hydrolysates, which showed clearly superior free radical scavenging activity, were further purified using consecutive chromatographic methods. Finally, a novel antioxidant peptide was obtained, and the sequence was identified as Ser-Leu-Pro-Ile-Gly-Leu-Met-Ile-Ala-Met at N-terminal. Oral administration of the peptide to mice effectively inhibited malondialdehyde (MDA) levels in a thiobarbituric acid reactive substances (TBARS) assay, and we also confirmed the antioxidative enzyme activities in superoxide dismutase (SOD) and glutathione-s-transferase (GST) assays. This is the first report of an antioxidant peptide derived from the hydrolysate of Mytilus coruscus, and also these results suggest that the peptide possesses potent antioxidant activity, and potential to enhance anti-inflammatory response.  相似文献   

2.
《Process Biochemistry》2007,42(10):1443-1448
To investigate biomedical and nutraceutical benefits of bullfrog (Rana catesbeiana Shaw) muscle protein, we examined an angiotensin I-converting enzyme (ACE I) inhibitory activity of various enzymatic hydrolystes of R. catesbeiana muscle protein in the present study. Among the enzymatic hydrolysates prepared using various commercial enzymes such as Alcalase, neutrase, pepsin, papain, α-chymotrypsin, and trypsin, Alcalase-proteolytic hydrolysates showed the highest ACE I inhibitory activity. During consecutive purification using a Hiprep 16/10 DEAE FF anion exchange and an octadecylsilane (ODS) C18 reversed phase liquid chromatographic techniques, a potent ACE I inhibitory peptide composed of 12 amino acids, Gly-Ala-Ala-Glu-Leu-Pro-Cys-Ser-Ala-Asp-Trp-Trp (Mw: 1.3 kDa) was isolated from R. catesbeiana muscle hydrolysates degraded by Alcalase. The purified peptide from R. catesbeiana muscle (RCMP-alca) has IC50 value of 0.95 μM, and Lineweaver–Burk plots suggest that RCMP-alca play act as a non-competitive inhibitor against ACE I. Antihypertensive effect in spontaneously hypertensive rats (SHR) also revealed that oral administration of RCMP-alca can decrease systolic blood pressure significantly (P < 0.05). In addition, MTT assay showed no cytotoxicity on human embryonic lung fibroblasts cell line (MRC-5). The result of this study suggests that the ACE inhibitory peptide derived from R. catesbeiana muscle (RCMP-alca) could be potential candidates to develop nutraceuticals and pharmaceuticals.  相似文献   

3.
We purified a novel antioxidant peptide from Ruditapes philippinarum (R. philippinarum) and investigated its free radical scavenging activities. To prepare the peptide, eight proteases were tested for enzymatic hydrolysis. α-chymotrypsin hydrolysate, which showed clearly superior hydroxyl radical scavenging activity (p < 0.05), were further purified using a flow filtration system and consecutive chromatographic methods. Finally, a novel antioxidant peptide was obtained, and the sequence was identified as Ser-Val-Glu-Ile-Gln-Ala-Leu-Cys-Asp-Met. The peptide from R. philippinarum effectively scavenged hydroxyl, DPPH, alkyl and superoxide radicals, with observed IC50 values of 0.042, 0.091, 0.107 and 0.372 mg/ml, respectively. This is the first report of an antioxidant peptide derived from the hydrolysates of R. philippinarum which, further, possesses competitive free radical quenching potential.  相似文献   

4.
Chemical investigation of the leaves of the oriental medicinal plant Aglaia odorata resulted in the isolation of five compounds: two dolabellane diterpenoids, two dammarane triterpenoids and a protostane triterpenoid, along with twenty known compounds. Their structures were elucidated on the basis of extensive spectroscopic analysis and by comparison of their NMR spectroscopic data with those reported in the literature. The anti-inflammatory activities of all compounds were evaluated as inhibitory activities against lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW264.7 cell lines. Eleven compounds possessed potent nitric oxide inhibitory activity with IC50 values ranging from 2.1 to 14.2 μM, these being better than that of the positive control, indomethacin (IC50 = 14.5 μM). In addition, three compounds exhibited significant activity against PGE2 release with IC50 values of 2.6, 16.1 and 23.0 μM.  相似文献   

5.
Chronic inflammation is the persistent and excessive immune response and can lead to a variety of diseases. Aiming to discover new compounds with anti-inflammatory activity, we report herein the synthesis and biological evaluation of 3-arylcoumarins. Thirty five 3-arylcoumarins were prepared through Perkin condensation and further acid-promoted hydrolysis if necessary. In lipopolysaccharide-activated mouse macrophage RAW264.7 cells, 6,8-dichloro-3-(2-methoxyphenyl)coumarin (16) and 6-bromo-8-methoxy-3-(3-methoxyphenyl)coumarin (25) exhibited nitric oxide production inhibitory activity with the IC50 values of 8.5 μM and 6.9 μM, respectively, providing a pharmacological potential as anti-inflammatory agents.  相似文献   

6.
7.
Angiotensin I-converting enzyme (ACE) inhibitory peptide was isolated from the Styela clava flesh tissue. Nine proteases (Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase, pepsin, trypsin, α-chymotrypsin and papain) were used, and their respective enzymatic hydrolysates and an aqueous extract were screened to evaluate their potential ACE inhibitory activity. Among all of the test samples, Protamex hydrolysate possessed the highest ACE inhibitory activity, and the Protamex hydrolysate of flesh tissue showed relatively higher ACE inhibitory activity compared with the Protamex hydrolysate of tunic tissue. We attempted to isolate ACE inhibitory peptide from the Protamex hydrolysate of S. clava flesh tissue using ultrafiltration, gel filtration on a Sephadex G-25 column and high performance liquid chromatography (HPLC) on an ODS column. The purified ACE inhibitory peptide exhibited an IC50 value of 37.1 μM and was identified as non-competitive inhibitor of ACE. Amino acid sequence of the peptide was identified as Ala-His-Ile-Ile-Ile, with a molecular weight 565.3 Da. The results of this study suggested that the peptides derived from enzymes-assisted extracts of S. clava would be useful new antihypertension compounds in functional food resource.  相似文献   

8.
Isolation of bioactive compounds and commercialization of marine microalgae sources are interesting targets in future marine biotechnology. Cultured biomass of the marine microalga, Nannochloropsis oculata, was used to purify angiotensin-I converting enzyme (ACE) inhibitory peptides using proteases including pepsin, trypsin, α-chymotrypsin, papain, alcalase, and neutrase. The pepsin hydrolysate exhibited the highest ACE inhibitory activity, compared to the other hydrolysates and then was separated into three fractions (F1, F2, and F3) using Sephadex G-25 gel filtration column chromatography. First fraction (F1) showed the highest ACE inhibitory activity and it was further purified into two fractions (F1-1 and F1-2) using reverse-phase high-performance liquid chromatography. The IC50 value of purified ACE inhibitory peptides were 123 and 173 μM and identified as novel peptides, Gly-Met-Asn-Asn-Leu-Thr-Pro (GMNNLTP; MW, 728 Da) and Leu-Glu-Gln (LEQ; MW, 369 Da), respectively. In addition, nitric oxide production level (%) was significantly increased by the purified peptide (Gly-Met-Asn-Asn-Leu-Thr-Pro) compared to the purified peptide (Leu-Glu-Gln) and other treated pepsin hydrolysate fractions on human umbilical vein endothelial cells (HUVECs). Cell viability assay showed no cytotoxicity on HUVECs with the treated purified peptides and fractions. These results suggest that the isolated peptides from cultured marine microalga, N. oculata protein sources may have potentiality to use commercially as ACE inhibitory agents in functional food industry.  相似文献   

9.
One new megastigmane, (6S,7R,8R,9S)-6-oxaspiro-7,8-dihydroxymegastigman-4-en-3-one (1) (tubiflorone, 1), and ten known compounds were isolated and characterized from the EtOH extract of Kalanchoe tubiflora (Harvey) Hamet. Structures of these isolates were assigned based on spectroscopic analyses that included 1D and 2D NMR techniques, such as HMQC, HMBC, and NOESY. The anti-inflammatory activities of selected isolated compounds (16 and 911) were evaluated as inhibitory activities against lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW264.7 cell lines. Compounds 14, 6, 9, and 11 possessed nitric oxide inhibitory activity with IC50 values ranging from 15.1 ± 0.9 to 98.9 ± 1.3 μM.  相似文献   

10.
To simplify the method of ACE-inhibitory peptide production, defatted canola meal was subjected to enzymatic proteolysis. Alcalase 2.4L and protease M “Amano” were found to be the most efficient enzymes in releasing ACE-inhibitory peptides from canola proteins among 13 tested enzymes. The IC50 values of canola protein hydrolysates ranged from 18.1 to 82.5 μg protein/mL. Differences in ACE-inhibitory activities of various protein hydrolysates reflected varied enzyme specificities. A positive correlation was determined between ACE-inhibitory activity and the degree of hydrolysis (r = 0.5916, p < 0.001). Ion-exchange chromatography of canola protein hydrolysate increased the protein content greater than 95% without loss of ACE-inhibitory activity. This fraction was resistant to the degradation of gastrointestinal enzyme and ACE during in vitro incubation and may be a useful ingredient in the formulation of hypotensive functional food products.  相似文献   

11.
In a search for anti-inflammatory activity in resources from Vietnamese mangroves, we found that a methanolic extract from the leaves of Calophyllum inophyllum (CIL) showed significant anti-inflammatory effects in vitro. Using various chromatographic techniques, we subsequently isolated 12 compounds (112) from a methanolic extract of CIL, including two novel compounds (12). The inhibitory effects of these compounds on lipopolysaccharide-induced nitric oxide (NO) production in RAW264.7 cells were also evaluated. Compound 1 significantly suppressed NO production (IC50 = 2.44 ± 0.88 µM), the secretion of pro-inflammatory cytokines (including interleukin-1 beta and tumor necrosis factor alpha), and the expression of inducible nitric oxide synthase through downregulation of nuclear factor-kappa-B signaling cascades. These results suggest that C. inophyllum leaves might be a useful resource for the development of drugs for the treatment of inflammation.  相似文献   

12.
Cassava pulp was hydrolyzed with acids or enzymes. A high glucose concentration (>100 g/L) was obtained from the hydrolysis with 1 N HCl at 121 °C, 15 min or with cellulase and amylases. While a high glucose yield (>0.85 g/g dry pulp) was obtained from the hydrolysis with HCl, enzymatic hydrolysis yielded only 0.4 g glucose/g dry pulp. These hydrolysates were used as the carbon source in fermentation by Rhizopus oryzae NRRL395. R. oryzae could not grow in media containing the hydrolysates treated with 1.5 N H2SO4 or 2 N H3PO4, but no significant growth inhibition was found with the hydrolysates from HCl (1 N) and enzyme treatments. Higher ethanol yield and productivity were observed from fermentation with the hydrolysates when compared with those from fermentation with glucose in which lactic acid was the main product. This was because the extra organic nitrogen in the hydrolysates promoted cell growth and ethanol production.  相似文献   

13.
Two new rearranged limonoids, harperforatin (1) and harperfolide (2), and a new chromone, harperamone (3), were isolated from fruits and roots of Harrisonia perforata, together with eight known compounds. Their structures were elucidated on the basis of spectroscopic data. Harperfolide (2) exhibited potent anti-inflammatory activity by suppressing nitric oxide (NO) production from activated macrophages with IC50 value of 6.51 μM. Furthermore, its effect is mediated by reduction of iNOS protein expression, attributable to the inhibitory action of LPS-induced NO production.  相似文献   

14.
Excessive NO (nitric oxide) has been associated with the pathogenesis of various neurodegenerative diseases including Alzheimer’s disease (AD). In our screening system using LPS-activated BV2 microglial cells, the methanolic extract of Disporum viridescens leaves was found to have significant NO inhibitory activity. Bioactivity-guided isolation yielded a new phenylpropanoid characterized as 4-ally-2,6-dimethoxyphenyl 1-O-β-d-apiofuranosyl (1  6)-β-d-glucopyranoside (12) with 21 known compounds from the leaves of D. viridescens. Among them, compounds 2 and 4 significantly inhibited NO production. Thus, we further elucidated the anti-inflammatory mechanism of these lignans. Especially, compound 4 inhibited the expression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) through the suppression of the MAPK signaling pathway. Taken together, the anti-inflammatory activities of the active constituents isolated from D. viridescens leaves could have therapeutic potential against neurodegenerative diseases.  相似文献   

15.
In different parts of the world, Cucumis melo Linn. (C melo) is used for its medicinal properties. The present study examined the effects of a methanolic extract of C melo Linn. (F1 hybrid, MECM) on benign prostatic hyperplasia in adult male Wistar rats and evaluated its anti-inflammatory activity in vivo. MECM treatment reduced prostate weight mildly. Histopathological studies showed that the extract produced a strong protective effect against the development of BPH by testosterone. The MECM also showed protection from testosterone-induced benign prostatic hyperplasia (BPH). MECM was tested against carrageenan-induced inflammation in rats' paws to determine its anti-inflammatory activity. It was shown that MECM had a pronounced effect on the inflammatory response in the late phase, i.e., one hour after carrageenan injection. Prostaglandins and nitric oxide are primarily responsible for this phase indicating that MECM can modify the production and release of prostaglandin and nitric oxide. A novel formulation containing C melo may be able to treat the conditions mentioned above.  相似文献   

16.
Four new triterpenoid saponins, clematochinenoside H–K (14), and five known structures (59), were isolated from the roots and rhizomes of Clematis chinensis. Their structures were elucidated on the basis of spectroscopic evidence and hydrolysis products. All isolates were evaluated for inhibitory effects against nitric oxide (NO) production in LPS-induced RAW 246.7 macrophages. Monodesmosidic saponins (13, 5, and 6) with a free carboxylic acid function at C-28 exhibited potent inhibitory activities with IC50 values in the range of 12.9–32.3 μM, where as bisdesmosidic saponin (4, and 7–9) showed modest inhibitory effects with the inhibition ratios (%) from 39.9 to 59.0 at 50 μM. In addition, the hydroxyl group at C-21 showed negative effect on the NO production inhibitory activity.  相似文献   

17.
A new norsesquiterpene named phaeocaulisin N (1), and three new guaiane-type sesquiterpenes named phaeocaulisins O–Q (24), together with a known norsesquiterpene (5) were isolated from the rhizomes of Curcuma phaeocaulis. Their structures were established based on extensive spectroscopic analysis. Compounds 1 and 5, as far as we know, are the first example of 13-norguaiane-type sesquiterpenes isolated from the genus Curcuma. All of the isolated compounds were tested for inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages. Compound 1 showed strong inhibitory activity on nitric oxide production with IC50 value of 3.58 ± 0.17 μM.  相似文献   

18.
We have previously reported that AmyI-1-18, an octadecapeptide derived from α-amylase (AmyI-1) of rice, is a novel cationic α-helical peptide that exhibited antimicrobial activity against human pathogens, including Porphyromonas gingivalis, Pseudomonas aeruginosa, Propionibacterium acnes, Streptococcus mutans, and Candida albicans. In this study, to further investigate the potential functions of AmyI-1-18, we examined its inhibitory ability against the endotoxic activities of lipopolysaccharides (LPSs, smooth and Rc types) and lipid A from Escherichia coli. AmyI-1-18 inhibited the production of endotoxin-induced nitric oxide (NO), an inflammatory mediator, in mouse macrophages (RAW264) in a concentration-dependent manner. The results of a chromogenic Limulus amebocyte lysate assay illustrated that the ability [50% effective concentration (EC50): 0.17 μM] of AmyI-1-18 to neutralize lipid A was similar to its ability (EC50: 0.26 μM) to neutralize LPS, suggesting that AmyI-1-18 specifically binds to the lipid A moiety of LPS. Surface plasmon resonance analysis of the interaction between AmyI-1-18 and LPS or lipid A also suggested that AmyI-1-18 directly binds to the lipid A moiety of LPS because the dissociation constant (KD) of AmyI-1-18 with lipid A is 5.6 × 10−10 M, which is similar to that (4.3 × 10−10 M) of AmyI-1-18 with LPS. In addition, AmyI-1-18 could block the binding of LPS-binding protein to LPS, although its ability was less than that of polymyxin B. These results suggest that AmyI-1-18 expressing antimicrobial and endotoxin-neutralizing activities is useful as a safe and potent host defense peptide against pathogenic Gram-negative bacteria in many fields of healthcare.  相似文献   

19.
20.
Two new cadinane-type sesquiterpenes, hypocreaterpenes A (1) and B (2), along with five known compounds (37) were isolated from a marine-derived fungus Hypocreales sp. strain HLS-104 isolated from a sponge Gelliodes carnosa. Their structures were determined by a combination of spectroscopic methods. All compounds were tested for the inhibitory effects on the nitric oxide (NO) production in lipopolysaccharide (LPS)-treated RAW264.7 cells. Among them, compounds 3 and 6 showed moderate anti-inflammatory activity with average maximum inhibition (Emax) values of 10.22% and 26.46% at 1 μM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号