首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we have measured the nanoscale compressive interactions between opposing aggrecan macromolecules in near-physiological conditions, in order to elucidate the molecular origins of tissue-level cartilage biomechanical behavior. Aggrecan molecules from fetal bovine epiphyseal cartilage were chemically end-grafted to planar substrates, standard nanosized atomic force microscopy (AFM) probe tips (R(tip) approximately 50 nm), and larger colloidal probe tips (R(tip) approximately 2.5 microm). To assess normal nanomechanical interaction forces between opposing aggrecan layers, substrates with microcontact printed aggrecan were imaged using contact mode AFM, and aggrecan layer height (and hence deformation) was measured as a function of solution ionic strength (IS) and applied normal load. Then, using high-resolution force spectroscopy, nanoscale compressive forces between opposing aggrecan on the tip and substrate were measured versus tip-substrate separation distance in 0.001-1M NaCl. Nanosized tips enabled measurement of the molecular stiffness of 2-4 aggrecan while colloidal tips probed the nanomechanical properties of larger assemblies (approximately 10(4) molecules). The compressive stiffness of aggrecan was much higher when using a densely packed colloidal tip than the stiffness measured for using the nanosized tip with a few aggrecan, demonstrating the importance of lateral interactions to the normal nanomechanical properties. The measured stress at 0.1M NaCl (near-physiological ionic strength) increased sharply at aggrecan densities under the tip of approximately 40 mg/ml (physiological densities are approximately 20-80 mg/ml), corresponding to an average inter-GAG spacing of 4-5 Debye lengths (4-5 nm); this characteristic spacing is consistent with the onset of significant electrostatic interactions between GAG chains of opposing aggrecan molecules. Comparison of nanomechanical data to the predictions of Poisson-Boltzmann-based models further elucidated the regimes over which electrostatic and nonelectrostatic interactions affect aggrecan stiffness in compression. The most important aspects of this study include: the incorporation of experiments at two different length scales, the use of microcontact printing to enable quantification of aggrecan deformation and the corresponding nanoscale compressive stress vs. strain curve, the use of tips of differing functionality to provide insights into the molecular mechanisms of deformation, and the comparison of experimental data to the predictions of three increasingly refined Poisson-Boltzmann (P-B)-based theoretical models for the electrostatic double layer component of the interaction.  相似文献   

2.
Atomic force microscopy was used in ambient conditions to directly image dense and sparse monolayers of bovine fetal epiphyseal and mature nasal cartilage aggrecan macromolecules adsorbed on mica substrates. Distinct resolution of the non-glycosylated N-terminal region from the glycosaminoglycan (GAG) brush of individual aggrecan monomers was achieved, as well as nanometer-scale resolution of individual GAG chain conformation and spacing. Fetal aggrecan core protein trace length (398+/-57 nm) and end-to-end length (257+/-87 nm) were both larger than that of mature aggrecan (352+/-88 and 226+/-81 nm, respectively). Similarly, fetal aggrecan GAG chain trace length (41+/-7 nm) and end-to-end (32+/-8 nm) length were both larger than that of mature aggrecan GAG (32+/-5 and 26+/-7 nm, respectively). GAG-GAG spacing along the core protein was significantly smaller in fetal compared to mature aggrecan (3.2+/-0.8 and 4.4+/-1.2nm, respectively). Together, these differences between the two aggrecan types were likely responsible for the greater persistence length of the fetal aggrecan (110 nm) compared to mature aggrecan (82 nm) calculated using the worm-like chain model. Measured dimensions and polymer statistical analyses were used in conjunction with the results of Western analyses, chromatographic, and carbohydrate electrophoresis measurements to better understand the dependence of aggrecan structure and properties on its constituent GAG chains.  相似文献   

3.
4.
The content, types and the fine structures of proteoglycans (PGs) present in human normal nasal cartilage (HNNC) were investigated and compared with those in human scoliotic nasal cartilage (HSNC). Three PG types were identified in both HNNC and HSNC; the large-sized high buoyant density aggrecan, which is the predominant PG population, and the small-sized low buoyant density biglycan and decorin. HSNC contained a significantly higher amount of keratan sulfate (KS)-rich aggrecan (30%) of smaller hydrodynamic size as compared to HNNC. The average molecular sizes (M(r)s) of aggecan-derived chondroitin sulfate (CS) chains in both HNNC and HSNC were identical (18 kDa), but they significantly differ in disaccharide composition, since CS isolated from HSNC contained higher proportions of 6-sulfated disaccharides as compared to those from HNNC. Scoliotic tissue contained also higher amounts (67%) of the small PGs, biglycan and decorin as compared to HNNC. It is worth noticing that both normal and scoliotic human nasal cartilage contain also non-glycanated forms of decorin and biglycan. Dermatan sulfate (DS) was the predominant glycosaminoglycan (GAG) present on biglycan and decorin in both tissues. The small PGs-derived CS chains in both normal and scoliotic cartilage had the same M(r) (20 kDa), whereas DS chains from scoliotic cartilage were of greater M(r) (32 kDa) than those from normal cartilage (24 kDa). Furthermore, scoliotic tissue-derived DS chains contained higher amounts of iduronate (20%) as compared to those of normal cartilage (12%). Disaccharide analysis of small PGs showed that both HNNC and HSNC were rich in 4-sulfated disaccharides and in each case, the small size PGs contained a considerably higher proportion of 4-sulfated disaccharides than the aggrecan of the same tissue. The higher amounts of matrix PGs identified in scoliotic tissue as well as the differences in fine chemical composition of their GAG chains may reflect the modified architecture and functional failure of scoliotic tissue.  相似文献   

5.
We investigated self-adhesion between highly negatively charged aggrecan macromolecules extracted from bovine cartilage extracellular matrix by performing atomic force microscopy (AFM) imaging and single-molecule force spectroscopy (SMFS) in saline solutions. By controlling the density of aggrecan molecules on both the gold substrate and the gold-coated tip surface at submonolayer densities, we were able to detect and quantify the Ca2+-dependent homodimeric interaction between individual aggrecan molecules at the single-molecule level. We found a typical nonlinear sawtooth profile in the AFM force-versus-distance curves with a molecular persistence length of lp = 0.31 ± 0.04 nm. This is attributed to the stepwise dissociation of individual glycosaminoglycan (GAG) side chains in aggrecans, which is very similar to the known force fingerprints of other cell adhesion proteoglycan systems. After studying the GAG-GAG dissociation in a dynamic, loading-rate-dependent manner (dynamic SMFS) and analyzing the data according to the stochastic Bell-Evans model for a thermally activated decay of a metastable state under an external force, we estimated for the single glycan interaction a mean lifetime of τ = 7.9 ± 4.9 s and a reaction bond length of xβ = 0.31 ± 0.08 nm. Whereas the xβ-value compares well with values from other cell adhesion carbohydrate recognition motifs in evolutionary distant marine sponge proteoglycans, the rather short GAG interaction lifetime reflects high intermolecular dynamics within aggrecan complexes, which may be relevant for the viscoelastic properties of cartilage tissue.  相似文献   

6.
Our objective was to evaluate the age-dependent mechanical phenotype of bone marrow stromal cell- (BMSC-) and chondrocyte-produced cartilage-like neo-tissue and to elucidate the matrix-associated mechanisms which generate this phenotype. Cells from both immature (2–4 month-old foals) and skeletally-mature (2–5 year-old adults) mixed-breed horses were isolated from animal-matched bone marrow and cartilage tissue, encapsulated in self-assembling-peptide hydrogels, and cultured with and without TGF-β1 supplementation. BMSCs and chondrocytes from both donor ages were encapsulated with high viability. BMSCs from both ages produced neo-tissue with higher mechanical stiffness than that produced by either young or adult chondrocytes. Young, but not adult, chondrocytes proliferated in response to TGF-β1 while BMSCs from both age groups proliferated with TGF-β1. Young chondrocytes stimulated by TGF-β1 accumulated ECM with 10-fold higher sulfated-glycosaminoglycan content than adult chondrocytes and 2–3-fold higher than BMSCs of either age. The opposite trend was observed for hydroxyproline content, with BMSCs accumulating 2–3-fold more than chondrocytes, independent of age. Size-exclusion chromatography of extracted proteoglycans showed that an aggrecan-like peak was the predominant sulfated proteoglycan for all cell types. Direct measurement of aggrecan core protein length and chondroitin sulfate chain length by single molecule atomic force microscopy imaging revealed that, independent of age, BMSCs produced longer core protein and longer chondroitin sulfate chains, and fewer short core protein molecules than chondrocytes, suggesting that the BMSC-produced aggrecan has a phenotype more characteristic of young tissue than chondrocyte-produced aggrecan. Aggrecan ultrastructure, ECM composition, and cellular proliferation combine to suggest a mechanism by which BMSCs produce a superior cartilage-like neo-tissue than either young or adult chondrocytes.  相似文献   

7.
8.
The content, types and the fine structures of proteoglycans (PGs) present in human normal nasal cartilage (HNNC) were investigated and compared with those in human scoliotic nasal cartilage (HSNC). Three PG types were identified in both HNNC and HSNC; the large-sized high buoyant density aggrecan, which is the predominant PG population, and the small-sized low buoyant density biglycan and decorin. HSNC contained a significantly higher amount of keratan sulfate (KS)-rich aggrecan (30%) of smaller hydrodynamic size as compared to HNNC. The average molecular sizes (Mrs) of aggecan-derived chondroitin sulfate (CS) chains in both HNNC and HSNC were identical (18 kDa), but they significantly differ in disaccharide composition, since CS isolated from HSNC contained higher proportions of 6-sulfated disaccharides as compared to those from HNNC. Scoliotic tissue contained also higher amounts (67%) of the small PGs, biglycan and decorin as compared to HNNC. It is worth noticing that both normal and scoliotic human nasal cartilage contain also non-glycanated forms of decorin and biglycan. Dermatan sulfate (DS) was the predominant glycosaminoglycan (GAG) present on biglycan and decorin in both tissues. The small PGs-derived CS chains in both normal and scoliotic cartilage had the same Mr (20 kDa), whereas DS chains from scoliotic cartilage were of greater Mr (32 kDa) than those from normal cartilage (24 kDa). Furthermore, scoliotic tissue-derived DS chains contained higher amounts of iduronate (20%) as compared to those of normal cartilage (12%). Disaccharide analysis of small PGs showed that both HNNC and HSNC were rich in 4-sulfated disaccharides and in each case, the small size PGs contained a considerably higher proportion of 4-sulfated disaccharides than the aggrecan of the same tissue. The higher amounts of matrix PGs identified in scoliotic tissue as well as the differences in fine chemical composition of their GAG chains may reflect the modified architecture and functional failure of scoliotic tissue.  相似文献   

9.
The nanomechanical properties of individual cartilage cells (chondrocytes) and their aggrecan and collagen-rich pericellular matrix (PCM) were measured via atomic force microscope nanoindentation using probe tips of two length scales (nanosized and micron-sized). The properties of cells freshly isolated from cartilage tissue (devoid of PCM) were compared to cells that were cultured for selected times (up to 28 days) in 3-D alginate gels which enabled PCM assembly and accumulation. Cells were immobilized and kept viable in pyramidal wells microfabricated into an array on silicon chips. Hertzian contact mechanics and finite element analyses were employed to estimate apparent moduli from the force versus depth curves. The effects of culture conditions on the resulting PCM properties were studied by comparing 10% fetal bovine serum to medium containing a combination of insulin growth factor-1 (IGF-1)+osteogenic protein-1 (OP-1). While both systems showed increases in stiffness with time in culture between days 7 and 28, the IGF-1+OP-1 combination resulted in a higher stiffness for the cell-PCM composite by day 28 and a higher apparent modulus of the PCM which is compared to the FBS cultured cells. These studies give insight into the temporal evolution of the nanomechanical properties of the pericellar matrix relevant to the biomechanics and mechanobiology of tissue-engineered constructs for cartilage repair.  相似文献   

10.
Monoclonal antibody (MAb) technology was used to examine aggrecan metabolites and the role of aggrecanases and matrix metalloproteinases (MMPs) in proteolysis of the interglobular domain (IGD) and C-terminus of aggrecan. An in vitro model of progressive cartilage degradation characterized by early proteoglycan loss and late stage collagen catabolism was evaluated in conjunction with a broad-spectrum inhibitor of MMPs. We have for the first time demonstrated that IGD cleavage by MMPs occurs during this late stage cartilage degeneration, both as a primary event in association with glycosaminoglycan (GAG) release from the tissue and secondarily in trimming of aggrecanase-generated G1 metabolites. Additionally, we have shown that MMPs were responsible for C-terminal catabolism of aggrecan and generation of chondroitin sulfate (CS) deficient aggrecan monomers and that this aggrecan truncation occurred prior to detectable IGD cleavage by MMPs. The onset of this later stage MMP activity was also evident by the generation of MMP-specific link protein catabolites in this model culture system. Recombinant MMP-1, -3 and -13 were all capable of C-terminally truncating aggrecan with at least two cleavage sites N-terminal to the CS attachment domains of aggrecan. Through analysis of aggrecan metabolites in pathological synovial fluids from human, canine and equine sources, we have demonstrated the presence of aggrecan catabolites that appear to have resulted from similar C-terminal processing of aggrecan as that induced in our in vitro culture systems. Finally, by developing a new MAb recognizing a linear epitope in the IGD of aggrecan, we have identified two novel aggrecan metabolites generated by an as yet unidentified proteolytic event. Collectively, these results suggest that C-terminal processing of aggrecan by MMPs may contribute to the depletion of cartilage GAG that leads to loss of tissue function in aging and disease. Furthermore, analysis of aggrecan metabolites resulting from both C-terminal and IGD cleavage by MMPs may prove useful in monitoring different stages in the progression of cartilage degeneration.  相似文献   

11.
12.
The enzymatic processes underlying the degradation of aggrecan in cartilage and the corresponding changes in the biomechanical properties of the tissue are an important part of the pathophysiology of osteoarthritis. Recent studies have demonstrated that the hexosamines glucosamine (GlcN) and mannosamine (ManN) can inhibit aggrecanase-mediated cleavage of aggrecan in IL-1-treated cartilage cultures. The term aggrecanase describes two or more members of the ADAMTS family of metalloproteinases whose glutamyl endopeptidase activity is known to be responsible for much of the aggrecan degradation seen in human arthritides. In this study we examined the effect of ManN and GlcN on aggrecanase-mediated degradation of aggrecan induced by IL-1alpha and the corresponding tissue mechanical properties in newborn bovine articular cartilage. After 6 days of culture in 10 ng/ml IL-1 plus ManN, mechanical testing of explants in confined compression demonstrated that ManN inhibited the IL-1alpha-induced degradation in tissue equilibrium modulus, dynamic stiffness, streaming potential, and hydraulic permeability, in a dose-dependent fashion, with peak inhibition ( approximately 75-100% inhibition) reached by a concentration of 1.35 mM. Aggrecan from explants cultured in IL-1 was found by Western analysis to be almost entirely processed down to the G1-NITEGE(373) end product. Addition of ManN or GlcN was found to produce 75-90% inhibition of this cleavage, but the proportion of aggrecan remaining in the tissue which was cleaved at aggrecanase sites in the chondroitin sulfate (CS)-rich region (Glu(1501) and Glu(1687)) was higher than with IL-1 alone. This result suggests that the preservation of mechanical properties by hexosamines in explants is primarily due to inhibition of cleavage at the Glu(373) site in the interglobular domain. While the precise mechanism by which hexosamines function in this system is unclear, the present analysis suggests that the mechanical properties examined may be predominantly a function of electrostatic repulsion due to the charged CS chains in the tightly packed repetitive sequences of the CS-1 region.  相似文献   

13.
The amount of glycosaminoglycan (GAG) in dry costal cartilage tissue of rats decreased with aging, while the GAG content in mg DNA (unit cartilage cell) remained the same with aging. These results can be explained by the finding that the total number of cartilage cells decreased with aging. Electrophoretic analysis showed that chondroitin 4-sulfate was the major GAG in rat costal cartilage of various ages. Rat costal cartilage of different ages was incubated with radioactive precursors, and newly synthesized GAG was prepared and the radioactivity analyzed to determine the biosynthetic activity. As to changes in the radioactivity uptake with aging per mg dry cartilage tissue, aging influenced [35S]sulfate incorporation into GAG more significantly than [3H]glucosamine incorporation into GAG. There was a significant decrease in the specific radioactivity of [35S]sulfate per mg DNA (unit cartilage cell), whereas the specific radioactivity of [3H]glucosamine per mg DNA did not change significantly with aging. Both the total sulfotransferase activity and the specific activity per mg DNA decreased significantly with aging. Analysis of disaccharide units formed after chondroitinase ABC digestion of labeled GAG isolated from young and old cartilage showed that the percentage of incorporation of [3H]glucosamine into deltaDi-OS increased significantly with aging. These results suggested that the appearance of nonsulfated positions in the structure of the chondroitin sulfate chain increased with aging. On the basis of gel chromatography on Bio-Gel A-1.5 m no significant difference in the approximate molecular size of chondroitin sulfate was observed between the young and old GAG samples. The present study indicated that the sulfation of chondroitin sulfate chains from rat costal cartilage decreased with the process of aging.  相似文献   

14.
In this study, the net intermolecular interaction force between a chondroitin sulfate glycosaminoglycan (GAG)-functionalized probe tip and an opposing GAG-functionalized planar substrate was measured as a function of probe tip-substrate separation distance in aqueous electrolyte solutions using the technique of high resolution force spectroscopy. A range of GAG grafting densities as near as possible to native cartilage was used. A long-range repulsive force between GAGs on the probe tip and substrate was observed, which increased nonlinearly with decreasing separation distance between probe tip and substrate. Data obtained in 0.1 M NaCl was well predicted by a recently developed Poisson-Boltzmann-based theoretical model that describes normal electrostatic double layer interaction forces between two opposing surfaces of end-grafted, cylindrical rods of constant volume charge density and finite length, which interdigitate upon compression. Based on these results, the nanomechanical data and interdigitated rod model were used together to estimate the electrostatic component of the equilibrium modulus of cartilage tissue, which was then compared to that of normal adult human ankle cartilage measured in uniaxial confined compression.  相似文献   

15.
Cartilage oligomeric matrix protein/thrombospondin 5 (COMP/TSP5) is a major component of the extracellular matrix (ECM) of the musculoskeletal system. Its importance is underscored by its association with several growth disorders. In this report, we investigated its interaction with aggrecan, a major component of cartilage ECM. We also tested a COMP/TSP5 mutant, designated MUT3 that accounts for 30% of human pseudoachondroplasia cases, to determine if the mutation affects function. Using a solid-phase binding assay, we have shown that COMP/TSP5 can bind aggrecan. This binding was decreased with MUT3, or when COMP/TSP5 was treated with EDTA, indicating the presence of a conformation-dependent aggrecan binding site. Soluble glycosaminoglycans (GAGs) partially inhibited binding, suggesting that the interaction was mediated in part through aggrecan GAG side chains. Using affinity co-electrophoresis, we showed that COMP/TSP5, in its calcium-replete conformation, bound to heparin, chondroitin sulfates, and heparan sulfate; this binding was reduced with EDTA treatment of COMP/TSP5. MUT3 showed weaker binding than calcium-repleted COMP/TSP5. Using recombinant COMP/TSP5 fragments, we found that the "signature domain" could bind to aggrecan, suggesting that this domain can mediate the interaction of COMP/TSP5 and aggrecan. In summary, our data indicate that COMP/TSP5 is an aggrecan-binding protein, and this interaction is regulated by the calcium-sensitive conformation of COMP/TSP5; interaction of COMP with aggrecan can be mediated through the GAG side chains on aggrecan and the "signature domain" of COMP/TSP5. Our results suggest that COMP/TSP5 may function to support matrix interactions in cartilage ECM.  相似文献   

16.
Aggrecan, a large chondroitin sulfate (CS) and keratan sulfate (KS) proteoglycan, has not previously been expressed as a full-length recombinant molecule. To facilitate structure/function analysis, we have characterized recombinant bovine aggrecan (rbAgg) and link protein expressed in COS-7 cells. We demonstrate that C-terminally truncated rbAgg was not secreted. Gel filtration chromatography of rbAgg and isolated glycosaminoglycan (GAG) chains, and their susceptibility to chondroitinase ABC digestion indicate that the GAG chains are predominantly CS, which likely occupy fewer serine residues than native aggrecan. To confirm functionality, we determined that rbAgg bound hyaluronan and recombinant link protein to form proteoglycan aggregates. In addition, cleavage of rbAgg by ADAMTS-4 revealed that the p68 form of ADAMTS-4 preferentially cleaves within the CS-2 domain, whereas the p40 form only effectively cleaves within the interglobular domain (IGD). MMP-13 cleaved rbAgg within the IGD, but cleaved more rapidly at a site within the CS domains, suggesting a role in C-terminal processing of aggrecan. Our results demonstrate that recombinant aggrecan can be used for in vitro analyses of matrix protease-dependent degradation of aggrecan in the IGD and CS domains, and both recombinant aggrecan and link protein can be used to study the assembly of proteoglycan aggregates with hyaluronan.  相似文献   

17.
Aggrecan degradation involves proteolytic cleavage of the core protein within the interglobular domain. Because aggrecan is highly glycosylated with chondroitin sulfate (CS) and keratan sulfate (KS), we investigated whether glycosylation affects digestion by aggrecanase at the Glu(373)-Ala(374) bond. Treatment of bovine aggrecan monomers to remove CS and KS resulted in loss of cleavage at this site, suggesting that glycosaminoglycans (GAGs) play a role in cleavage at the Glu(373)-Ala(374) bond. In contrast, MMP-3 cleavage at the Ser(341)-Phe(342) bond was not affected by glycosidase treatment of aggrecan. Removal of KS, but not CS, prevented cleavage at the Glu(373)-Ala(374) bond. Thus, KS residues may be important for recognition of this cleavage site by aggrecanase. KS glycosylation has been observed at sites adjacent to the Glu(373)-Ala(374) bond in steer aggrecan, but not in calf aggrecan (Barry, F. P., Rosenberg, L. C., Gaw, J. U., Gaw, J. U., Koob, T. J., and Neame, P. J. (1995) J. Biol. Chem. 270, 20516-20524). Interestingly, although we found that aggrecanase degraded both calf and steer cartilage aggrecan, the proportion of fragments generated by cleavage at the Glu(373)-Ala(374) bond was higher in steer than in calf, consistent with our observations using aggrecan treated to remove KS. We conclude that the GAG content of aggrecan influences the specificity of aggrecanase for cleavage at the Glu(373)-Ala(374) bond and suggest that age may be a factor in aggrecanase degradation of cartilage.  相似文献   

18.
Aggrecan, the predominant large proteoglycan of cartilage, is a multidomain macromolecule with each domain contributing specific functional properties. One of the domains contains the majority of the keratan sulfate (KS) chain substituents and a protein segment with a proline-rich hexapeptide repeat sequence. The function of this domain is unknown but the primary structure suggests a potential for binding to collagen fibrils. We have examined binding of aggrecan fragments encompassing the KS-rich region in a solid-phase assay. A moderate affinity (apparent Kd = 1.1 microM) for isolated collagen II, as well as collagen I, was demonstrated. Enzymatic digestion of the KS chains did not alter the capacity of the peptide to bind to collagen, whereas cleavage of the protein core abolished the interaction. The distribution of the aggrecan KS-rich region in bovine tarsometatarsal joint cartilage was investigated using immunoelectron microscopy. Immunoreactivity was relatively low in the superficial zone and higher in the intermediate and deep zones of the uncalcified cartilage. Within the pericellular and territorial matrix compartments the epitopes representing the aggrecan KS-rich region were detected preferentially near or at collagen fibrils. Along the fibrils, epitope reactivity was non-randomly distributed, showing preference for the gap region within the D-period. Our data suggest that collagen fibrils interact with the KS-rich regions of several aggrecan monomers aligned within a proteoglycan aggregate. The fibril could therefore serve as a backbone in at least some of the aggrecan complexes.  相似文献   

19.
Aggrecan is the major proteoglycan in the extracellular matrix of cartilage. A notable exception is nanomelic cartilage, which lacks aggrecan in its matrix. The example of nanomelia and other evidence leads us to believe that the G3 domain plays an important role in aggrecan processing, and it has indeed been confirmed that G3 allows glycosaminoglycan (GAG) chain attachment and product secretion. However, it is not clear how G3, which contains at least a carbohydrate recognition domain (CRD) and a complement binding protein (CBP) motif, plays these two functional roles. The present study was designed to dissect the mechanisms of this phenomenon and specially 1) to determine the effects of various cysteine residues in GAG modification and product secretion as well as 2) to investigate which of the two processing events is the critical step in the product processing. Our studies demonstrated that removal of the two amino-terminal cysteines in the CRD motif and the single cysteine in the amino terminus of CBP inhibited secretion of CRD and CBP. Use of the double mutant CRD construct also allowed us to observe a deviation from the usual strict coupling of GAG modification and product secretion steps. The presence of a small chondroitin sulfate fragment overcame the secretion-inhibitory effects once the small chondroitin sulfate fragment was modified by GAG.  相似文献   

20.
Proteoglycans (PGs) are composed of a protein moiety and a complex glycosaminoglycan (GAG) polysaccharide moiety. GAG chains are responsible for various biological activities. GAG chains are covalently attached to serine residues of the core protein. The first step in PG biosynthesis is xylosylation of certain serine residues of the core protein. A specific linker tetrasaccharide is then assembled and serves as an acceptor for elongation of GAG chains. If the production of endogenous GAG chains is selectively inhibited, one could determine the role of these endogenous molecules in physiological and developmental functions in a spatiotemporal manner. Biosynthesis of PGs is often blocked with the aid of nonspecific agents such as chlorate, a bleaching agent, and brefeldin A, a fungal metabolite, to elucidate the biological roles of GAG chains. Unfortunately, these agents are highly lethal to model organisms. Xylosides are known to prime GAG chains. Therefore, we hypothesized that modified xylose analogs may able to inhibit the biosynthesis of PGs. To test this, we synthesized a library of novel 4-deoxy-4-fluoroxylosides with various aglycones using click chemistry and examined each for its ability to inhibit heparan sulfate and chondroitin sulfate using Chinese hamster ovary cells as a model cellular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号