首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have analyzed the structure of Ig kappa chain genes in B cell lines derived from a human individual who cannot synthesize any kappa chains, and whose Igs all contain lambda chains (1). We have characterized secondary DNA recombination events at two kappa alleles which have undergone misaligned V-J recombinations. One such secondary recombination has joined the flanking sequences of a V kappa and a J kappa 2 gene segment as if it were the reciprocal product of a V-J kappa 2 recombination, and resulted in the displacement of the recombined VJ kappa 1 gene segments from the C kappa locus. The non-rearranged form of the V kappa fragment which had recombined with the J kappa 2 flank was cloned. Nucleotide sequencing of this fragment identified a V kappa gene that differed by at least 38% from all previously sequenced human V kappa genes. The other V-J kappa segment analyzed has undergone a secondary recombination at a different site from that described above, at a site within the intervening sequence between the J kappa and C kappa gene segments, similar to the location of secondary recombinations which have occurred in lambda + B cell lines from mice and humans (2,3). These results prove that multiple recombinations can occur at one J kappa-C kappa locus.  相似文献   

2.
The mammalian tick-borne flavivirus group (MTBFG) contains viruses associated with important human and animal diseases such as encephalitis and hemorrhagic fever. In contrast to mosquito-borne flaviviruses where recombination events are frequent, the evolutionary dynamic within the MTBFG was believed to be essentially clonal. This assumption was challenged with the recent report of several homologous recombinations within the Tick-borne encephalitis virus (TBEV). We performed a thorough analysis of publicly available genomes in this group and found no compelling evidence for the previously identified recombinations. However, our results show for the first time that demonstrable recombination (i.e., with large statistical support and strong phylogenetic evidences) has occurred in the MTBFG, more specifically within the Louping ill virus lineage. Putative parents, recombinant strains and breakpoints were further tested for statistical significance using phylogenetic methods. We investigated the time of divergence between the recombinant and parental strains in a Bayesian framework. The recombination was estimated to have occurred during a window of 282 to 76 years before the present. By unravelling the temporal setting of the event, we adduce hypotheses about the ecological conditions that could account for the observed recombination.  相似文献   

3.
MOTIVATION: The antigen receptors of adaptive immunity-T-cell receptors and immunoglobulins-are encoded by genes assembled stochastically from combinatorial libraries of gene segments. Immunoglobulin genes then experience further diversification through hypermutation. Analysis of the somatic genetics of the immune response depends explicitly on inference of the details of the recombinatorial process giving rise to each of the participating antigen receptor genes. We have developed a dynamic programming algorithm to perform this reconstruction and have implemented it as web-accessible software called SoDA (Somatic Diversification Analysis). RESULTS: We tested SoDA against a set of 120 artificial immunoglobulin sequences generated by simulation of recombination and compared the results with two other widely used programs. SoDA inferred the correct gene segments more frequently than the other two programs. We further tested these programs using 30 human immunoglobulin genes from Genbank and here highlight instances where the recombinations inferred by the three programs differ. SoDA appears generally to find more likely recombinations.  相似文献   

4.
Kondo R  Kaneko S  Sun H  Sakaizumi M  Chigusa SI 《Gene》2002,282(1-2):113-120
Vertebrate olfactory receptors (OR) exists as the largest multigene family, scattered throughout the genome in clusters. Studies have shown that different animals possess remarkably diverse set of OR genes to recognize diverse odor molecules. In order to examine the evolutionary process of OR diversification, we examined three OR gene subfamilies from Japanese medaka fish (seven lines sampled from four populations). For each subfamily, the sequences of ancestral genes were inferred based on distance method. Examination of d(N)/d(S) ratios for each branch of phylogenetic trees suggested that purifying selection is the major force of evolution in medaka OR genes. However, for the mfOR1 and mfOR2 paralogous gene pairs, a nonrandom distribution of fixed amino acid changes and the d(N)>d(S) in a branch suggested that diversifying selection occurred after gene duplication. The fixed amino acid changes were observed in the third, fifth and sixth transmembrane domains, which has been predicted to serve as a ligand-binding pocket in a structural model. Compatibility test suggested that interlocus recombinations involving the fourth transmembrane domain occurred between the mfOR1 and mfOR2 gene pairs. The pattern of nucleotide substitutions in other OR genes agrees with the hypothesis that a limited number of amino acid residues are involved in odorant binding. Such comparative analyses of paralogous OR genes should provide bases for understanding the evolution, the structure, and the functional specificity of OR genes.  相似文献   

5.
The flattop mountains (tepuis) of South America are ancient remnants of the Precambrian Guiana Shield plateau. The tepui summits, isolated by their surrounding cliffs that can be up to 1000 m tall, are thought of as “islands in the sky,” harboring relict flora and fauna that underwent vicariant speciation due to plateau fragmentation. High endemicity atop tepui summits support the idea of an ancient “Lost World” biota. However, recent work suggests that dispersal between lowlands and summits has occurred long after tepui formation indicating that tepui summits may not be as isolated from the lowlands as researchers have long suggested. Neither view of the origin of the tepui biota (i.e., ancient vicariance vs. recent dispersal) has strong empirical support owing to a lack of studies. We test diversification hypotheses of the Guiana Shield highlands by estimating divergence times of an endemic group of treefrogs, Tepuihyla. We find that diversification of this group does not support an ancient origin for this taxon; instead, divergence times among the highland species are 2–5 Ma. Our data indicate that most highland speciation occurred during the Pliocene. Thus, this unparalleled landscape known as “The Lost World” is inhabited, in part, not by Early Tertiary relicts but neoendemics.  相似文献   

6.
Genetic linkage between the marker G8 (D4S10) and Huntington disease (HD) was studied in six Dutch pedigrees. The informativeness of the D4S10 locus was increased by isolation of a cosmid, C5.5, with a G8 subclone used as probe. We present a restriction map of 70 kb in the D4S10 region. Two subclones of C5.5, H5.52 and F5.53, detect MspI and SinI RFLPs, respectively. These probes increase the informativeness of D4S10 in the Dutch HD population from 55% to 95%. Seven recombinations were found in 124 informative meioses in which multipoint segregation of D4S10 haplotypes and the HD locus was studied. Two of the recombinations occurred within the D4S10 region. The other five recombinations are highly valuable for the mapping of present and future markers relative to each other and to the HD gene. In addition, several recombinations between markers in meioses from unaffected parents were noted, which will also be useful in ordering new markers. On the basis of our three-point recombination data, the orientation of the D4S10 region relative to HD is HD-H5.52-G8-F5.53, which independently confirms the previously derived polarity for D4S10.  相似文献   

7.
Lefebvre JF  Labuda D 《Genetics》2008,178(4):2069-2079
In this article we present a new heuristic approach (informative recombinations, InfRec) to analyze recombination density at the sequence level. InfRec is intuitive and easy and combines previously developed methods that (i) resolve genotypes into haplotypes, (ii) estimate the minimum number of recombinations, and (iii) evaluate the fraction of informative recombinations. We tested this approach in its sliding-window version on 117 genes from the SeattleSNPs program, resequenced in 24 African-Americans (AAs) and 23 European-Americans (EAs). We obtained population recombination rate estimates (rho(obs)) of 0.85 and 0.37 kb(-1) in AAs and EAs, respectively. Coalescence simulations indicated that these values account for both the recombinations and the gene conversions in the history of the sample. The intensity of rho(obs) varied considerably along the sequence, revealing the presence of recombination hotspots. Overall, we observed approximately 80% of recombinations in one-third and approximately 50% in only 10% of the sequence. InfRec performance, tested on published simulated and additional experimental data sets, was similar to that of other hotspot detection methods. Fast, intuitive, and visual, InfRec is not constrained by sample size limitations. It facilitates understanding data and provides a simple and flexible tool to analyze recombination intensity along the sequence.  相似文献   

8.
Sato Y  Niimura Y  Yura K  Go M 《Gene》1999,238(1):93-101
Xylanases are classified into two families, numbered F/10 and G/11 according to the similarity of amino acid sequences of their catalytic domain (Henrissat, B., Bairoch, A., 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781-788). Three-dimensional structure of the catalytic domain of the family F/10 xylanase was reported (White, A., Withers, S.G., Gilkes, N.R., Rose, D.R., 1994. Crystal structure of the catalytic domain of the beta-1,4-glycanase Cex from Cellulomonas fimi. Biochemistry 33, 12546-12552). The domain was decomposed into 22 modules by centripetal profiles (Go, M., Nosaka, M., 1987. Protein architecture and the origin of introns. Cold Spring Harbor Symp. Quant. Biol. 52, 915-924; Noguti, T., Sakakibara, H., Go, M., 1993. Localization of hydrogen-bonds within modules in barnase. Proteins 16, 357-363). A module is a contiguous polypeptide segment of amino acid residues having a compact conformation within a globular domain. Collected 31 intron sites of the family F/10 xylanase genes from fungus were found to be correlated to module boundaries with considerable statistical force (p values <0.001). The relationship between the intron locations and protein structures provides supporting evidence for the ancient origin of introns, because such a relationship cannot be expected by random insertion of introns into eukaryotic genes, but it rather suggests pre-existence of introns in the ancestral genes of prokaryotes and eukaryotes. A phylogenetic tree of the fungal and bacterial xylanase sequences made two clusters; one includes both the bacterial and fungal genes, but the other consists of only fungal genes. The mixed cluster of bacterial genes without introns and the fungal genes with introns further supports the ancient origin of introns. Comparison of the conserved base sequences of introns indicates that sliding of a splice site occurred in Aspergillus kawachii gene by one base from the ancestral position. Substrate-binding sites of xylanase are localized on eight modules, and introns are found at both termini of six out of these functional modules. This result suggests that introns might play a functional role in shuffling the exons encoding the substrate-binding modules.  相似文献   

9.
Single copy genes, universally distributed across the three domains of life and encoding mostly ancient parts of the translation machinery, are thought to be only rarely subjected to horizontal gene transfer (HGT). Indeed it has been proposed to have occurred in only a few genes and implies a rare, probably not advantageous event in which an ortholog displaces the original gene and has to function in a foreign context (orthologous gene displacement, OGD). Here, we have utilised an automatic method to identify HGT based on a conservative statistical approach capable of robustly assigning both donors and acceptors. Applied to 40 universally single copy genes we found that as many as 68 HGTs (implying OGDs) have occurred in these genes with a rate of 1.7 per family since the last universal common ancestor (LUCA). We examined a number of factors that have been claimed to be fundamental to HGT in general and tested their validity in the subset of universally distributed single copy genes. We found that differing functional constraints impact rates of OGD and the more evolutionarily distant the donor and acceptor, the less likely an OGD is to occur. Furthermore, species with larger genomes are more likely to be subjected to OGD. Most importantly, regardless of the trends above, the number of OGDs increases linearly with time, indicating a neutral, constant rate. This suggests that levels of HGT above this rate may be indicative of positively selected transfers that may allow niche adaptation or bestow other benefits to the recipient organism.  相似文献   

10.
11.
A sequestered germline in Metazoa has been argued to be an obstacle to lateral gene transfer (LGT), though few studies have specifically assessed this claim. Here, we test the hypothesis that the origin of a sequestered germline reduced LGT events in Bilateria (i.e., triploblast lineages) as compared to early‐diverging Metazoa (i.e., Ctenophora, Cnidaria, Porifera, and Placozoa). We analyze single‐gene phylogenies generated with over 900 species sampled from among Bacteria, Archaea, and Eukaryota to identify well‐supported interdomain LGTs. We focus on ancient interdomain LGT (i.e., those between prokaryotes and multiple lineages of Metazoa) as systematic errors in single‐gene tree reconstruction create uncertainties for interpreting eukaryote‐to‐eukaryote transfer. The breadth of the sampled Metazoa enables us to estimate the timing of LGTs, and to examine the pattern before versus after the evolution of a sequestered germline. We identified 58 LGTs found only in Metazoa and prokaryotes (i.e., bacteria and/or archaea), and seven genes transferred from prokaryotes into Metazoa plus one other eukaryotic clade. Our analyses indicate that more interdomain transfers occurred before the development of a sequestered germline, consistent with the hypothesis that this feature is an obstacle to LGT.  相似文献   

12.
The primate ABO blood group gene encodes a glycosyl transferase (either A or B type), and is known to have large coalescence times among the allelic lineages in human. We determined nucleotide sequences of ca. 2.2 kb of this gene for 23 individuals of three gibbon species (agile gibbon, white-handed gibbon, and siamang), and observed a total of 24 haplotypes. We found relics of five ancient intragenic recombinations, occurred during ca. 2–7 million years ago, through a phylogenetic network analysis. The coalescence time between A and B alleles estimate precede the divergence (ca. 8 MYA) of siamang and common gibbon lineages. This establishes the coexistence of divergent allelic lineages of the ABO blood group gene for a long period in the ancestral gibbon species, and strengthens the non-neutral evolution for this gene.  相似文献   

13.
Polyploidy and angiosperm diversification   总被引:2,自引:0,他引:2  
Polyploidy has long been recognized as a major force in angiosperm evolution. Recent genomic investigations not only indicate that polyploidy is ubiquitous among angiosperms, but also suggest several ancient genome-doubling events. These include ancient whole genome duplication (WGD) events in basal angiosperm lineages, as well as a proposed paleohexaploid event that may have occurred close to the eudicot divergence. However, there is currently no evidence for WGD in Amborella, the putative sister species to other extant angiosperms. The question is no longer "What proportion of angiosperms are polyploid?", but "How many episodes of polyploidy characterize any given lineage?" New algorithms provide promise that ancestral genomes can be reconstructed for deep divergences (e.g., it may be possible to reconstruct the ancestral eudicot or even the ancestral angiosperm genome). Comparisons of diversification rates suggest that genome doubling may have led to a dramatic increase in species richness in several angiosperm lineages, including Poaceae, Solanaceae, Fabaceae, and Brassicaceae. However, additional genomic studies are needed to pinpoint the exact phylogenetic placement of the ancient polyploidy events within these lineages and to determine when novel genes resulting from polyploidy have enabled adaptive radiations.  相似文献   

14.
15.
Duplication of some floral regulatory genes has occurred repeatedly in angiosperms, whereas others are thought to be single-copy in most lineages. We selected three genes that interact in a pathway regulating floral development conserved among higher tricolpates (LFY/FLO, UFO/FIM, and AP3/DEF) and screened for copy number among families of Lamiales that are closely related to the model species Antirrhinum majus. We show that two of three genes have duplicated at least twice in the Lamiales. Phylogenetic analyses of paralogs suggest that an ancient whole genome duplication shared among many families of Lamiales occurred after the ancestor of these families diverged from the lineage leading to Veronicaceae (including the single-copy species A. majus). Duplication is consistent with previous patterns among angiosperm lineages for AP3/DEF, but this is the first report of functional duplicate copies of LFY/FLO outside of tetraploid species. We propose Lamiales taxa will be good models for understanding mechanisms of duplicate gene preservation and how floral regulatory genes may contribute to morphological diversity.  相似文献   

16.
Shete S  Zhou X 《Human heredity》2005,59(1):26-33
Genomic imprinting is a mechanism by which only one copy of a gene pair is expressed, and this expression is determined by the parental origin of the copy. The deregulation of imprinted genes has been implicated in a number of human diseases. The Imprinted Gene Catalogue now has more than 200 genes listed, and estimates based on mouse models suggest many more may exist in humans. Therefore, the development of methods to identify such genes is important. In this communication, we present a parametric model-based approach to analyzing arbitrary-sized pedigree data for genomic imprinting. We have modified widely used LINKAGE program to incorporate our proposed approach. In addition, our approach allows for the use of sex-specific recombinations in the analysis, which is of particular importance in a genome-wide analysis for imprinted genes. We compared our imprinting analysis approach to that implemented in the GENEHUNTER-IMPRINT program using simulation studies as well as by analyzing causal genes in Angelman's syndrome families, which are known to be imprinted. These analyses showed that the proposed approach is very powerful for detecting imprinted genes in large pedigrees.  相似文献   

17.
Ig kappa-chain gene rearrangement results in the displacement or loss of the DNA immediately 5' of Jk. This retained DNA is found on a different size fragment than in the germline (a reciprocal fragment), and contains the reciprocal joint of rearranged Vk and Jk genes, the back-to-back fusion of the heptamer/nonamer recombination signals. B cells of independent origin rarely have reciprocal fragments of the same size. However, we report that 9 of 15 B cell hybridomas of independent origin have reciprocal fragments of the same size (8-kb BamHI fragments) unrelated to their productive rearrangements. An 8-kb reciprocal fragment has also occurred on about 25% of the kappa alleles of normal splenic B cells. We find that the reciprocal fragments in two of these hybridomas contain the reciprocal joints of Jk1 genes and different Vk8 genes. In addition, we find that at least 8 of the 12 Jk4 or Jk5 expressing hybridomas have undergone double recombinations on their productive kappa alleles. The implications of these findings on the high frequency of 8-kb reciprocal rearrangements and on Vk rearrangement are discussed.  相似文献   

18.
Genotyping of 21 varicella-zoster virus (VZV) strains using a scattered single nucleotide polymorphism (SNP) method revealed ambiguous SNPs and two nontypeable isolates. For a further genetic characterization, the genomes of all strains were sequenced using the 454 technology. Almost-complete genome sequences were assembled, and most remaining gaps were closed with Sanger sequencing. Phylogenetic analysis of 42 genomes revealed five established and two novel VZV genotypes, provisionally termed VIII and IX. Genotypes VIII and IX are distinct from the previously reported provisional genotypes VI and VII as judged from the SNP pattern. The alignments showed evidence of ancient recombination events in the phylogeny of clade 4 and recent recombinations within single strains: 3/2005 (clade 1), 11 and 405/2007 (clade 3), 8 and DR (clade 4), CA123 and 413/2000 (clade 5), and strains of the novel genotypes VIII and IX. Bayesian tree inference of the thymidine kinase and the polymerase genes of the VZV clades and other varicelloviruses revealed that VZV radiation began some 110,000 years ago, which correlates with the out-of-Africa dispersal of modern humans. The split of ancestral clades 2/4 and 1/3/5/VIII/IX shows the greatest node height.  相似文献   

19.
BACKGROUND: Expressing two genes in the progeny of stem and progenitor cells that are transduced with a unique viral vector is desirable in certain situations. We tested the ability of two lentiviral vectors to transduce human cells of hematopoietic origin and concomitantly express two reporter genes, either EGFP (enhanced green fluorescent protein) and DsRed2, or EGFP and EYFP (enhanced yellow fluorescent protein), from two internal promoters. METHODS: The vectors were generated from the pTRIP deltaU3 EF1alpha EGFP lentiviral vector. Following transduction of hematopoietic and non-hematopoietic cell lines, we performed FACS, PCR and Southern blot analyzes to quantify transduction, integration efficiencies and size of integrated lentiviral vectors, respectively. RESULTS: The detection of DsRed2 fluorescence appeared unexpectedly low in human cells of hematopoietic origin. Alternatively, a modification in the flow cytometry assay allowed us to distinguish between the two overlapping fluorescence signals emitted by EGFP and EYFP, when transduced cells were excited with a 488-nm laser beam. However, the low frequency of double-positive EGFP+ EYFP+ cells, and the existence of single-positive, mostly EGFP- EYFP+, cells, prompted us to search for recombinations in the vector sequence. Southern blotting of DNA obtained from transduced cells indeed demonstrated that recombination had occurred between the two closely related EGFP and EYFP sequences. DISCUSSION: These observations suggest that recombination occurred within the EGFP and EYFP genes, which differ by only four amino acids. We conclude that the insertion of two highly homologous sequences into a lentiviral backbone can favor recombination.  相似文献   

20.
We determined the entire nucleotide sequences of all introns within the RHD and RHCE genes by amplifying genomic DNA using long PCR methods. The RHD and RHCE genes were 57,295 and 57,831 bp in length, respectively. Aligning both genes revealed 138 gaps (insertions and deletions) below 100 bp, 1116 substitutions in all introns and all exons (coding region), and 5 gaps of over 100 bp. Homologies (%) between the RH genes were 93.8% over all introns and coding exons and 91.7% over all exons and introns. Various short tandem repeats (STRs) and many interspersed nuclear elements were identified in both genes. The proportions of Alu sequences in the RHD and RHCE genes were 25.9 and 25.7%, respectively and these Alu sequences were concentrated in several regions. We confirmed multiple recombinations in introns 1 and 2. Such multiple recombination, which probably arose due to the concentrations of Alu sequences and the high level of the homology (%), is one of most important factors in the formation and evolution of RH gene. The variability of the Rh system may be generated because of these features of RH genes. Apparent mutational hotspots and regions with low of K values (the numbers of substitutions per nucleotide site) caused by recombinations as well as true mutational hotspots may be found in human genome. Accordingly, in searching for and identifying single nucleotide polymorphisms (SNPs) especially in noncoding regions, apparent mutational hotspots and areas of low K values by recombination should be noted since the unequal distribution of SNPs will reduce the power of SNPs as genetic maker. Combining the complete sequences' data of both RH genes with serological findings will provide beneficial information with which to elucidate the mechanism of recombination, mutation, polymorphism, and evolution of other genes containing the RH gene as well as to analyze Rh variants and develop new methods of Rh genotyping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号