首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
蛋白磷酸酯酶对Alzheimer神经原纤维缠结的松解作用   总被引:3,自引:0,他引:3  
神经原纤维缠结是Alzheimer患者的特征性脑病理损伤,其形成机制至今不明.根据神经原纤维缠结的基本组分是异常磷酸化tau蛋白的聚集形式双螺旋丝(pairedhelicalfilaments,PHF)的研究结果,推测蛋白磷酸酯酶与蛋白激酶的失衡可能与PHF的形成有关.将蛋白磷酸酯酶PP-2A和PP-2B与PHF一起在37℃保温30min可使PHF缠结结构松解,成为单个PHF原纤维,延长去磷酸化反应时间至3h可使PHF结构进一步松解,释放一些游离PHF原纤维片段.放免印迹定量分析结果表明:PP-2A处理的PHF样品比对照者释放游离tau蛋白的量增加25%.此外,PP-2A和PP-2B去磷酸化的PHF对脑中钙激活的中性蛋白水解酶的抗性降低.这些研究资料从结构上显示了Alzheimer病脑病理损伤的可逆性,为Alzheimer病治疗的可能性提供了实验依据  相似文献   

2.
Antisera to paired helical filaments (PHF) were found to contain a significant amount of tau antibodies specific for a phosphorylated form, but only a negligible amount of those specific for a non-phosphorylated form. Also, the phosphorylated tau-specific antibodies, but not the non-phosphorylated tau-specific ones, labeled neurofibrillary tangles isolated in the presence of sodium dodecyl sulfate (SDS) and stained both tangles and senile plaque neuritis in fixed tissue sections in a very similar way to as the whole antiserum did. Taken together, these results strongly suggest that a major antigenic determinant of PHF is phosphorylated tau itself.  相似文献   

3.
The paired helical filaments (PHF) found in Alzheimer's disease (AD) brain are composed mainly of the hyperphosphorylated form of microtubule-associated protein tau (PHF-tau). It is well known that tau is a good in vitro substrate for Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). To establish the phosphorylation sites, the longest human tau (hTau40) was bacterially expressed and phosphorylated by CaM kinase II, followed by digestion with lysyl endoprotease. The digests were subjected to liquid chromatography/mass spectrometry. We found that 5 of 22 identified peptides were phosphorylated. From the tandem mass spectrometry, two phosphorylation sites (serines 262 and 356) were identified in the tubulin binding sites. When tau was phosphorylated by CaM kinase II, the binding of tau to taxol-stabilized microtubules was remarkably impaired. As both serines 262 and 356 are reportedly phosphorylated in PHF-tau, CaM kinase II may be involved in hyperphosphorylation of tau in AD brain.  相似文献   

4.
Alzheimer disease and related dementia are characterized by the presence of hyperphosphorylated tau aggregated into filaments. The role of tau phosphorylation in the fibrillogenesis has not yet been unraveled. Therefore, it is important to know which phosphatases can dephosphorylate tau protein in vivo. The effect of recombinant purified calcineurin (CN(PP2B)) and several calcineurin mutants on tau phosphorylation was studied in two neuronal like cell lines PC12 and SH-SY5Y. The modulation of tau phosphorylation at Ser199/Ser202, Ser396/Ser404, Ser262/Ser356, and Thr181 sites was examined in these cell lines using the phosphorylation state-dependent antitau antibodies Tau 1, PHF1, 12E8, and AT270. The results have shown that CN directly dephosphorylates all of those sites of tau protein. Recombinant calcineurin introduced into cells that have previously been treated with okadaic acid and cyclosporin A, which are inhibitors of phosphatases (PP1/PP2A and PP2B), has a direct effect on the phosphorylation status on all phosphorylation sites studied. We conclude that calcineurin is (besides PP2A) a important modulator of tau phosphorylation in vivo.  相似文献   

5.
While early 1990s reports showed the phosphorylation pattern of fetal tau protein to be similar to that of tau in paired helical filaments (PHF) in Alzheimer's disease (AD), neither the molecular mechanisms of the transient developmental hyperphosphorylation of tau nor reactivation of the fetal plasticity due to re-expression of fetal protein kinases in the aging and AD human brain have been sufficiently investigated. Here, we summarize the current knowledge on fetal tau, adding new data on the specific patterns of tau protein and mRNA expression in the developing human brain as well as on change in tau phosphorylation in the perforant pathway after entorhinal cortex lesion in mice. As fetal tau isoform does not form PHF even in a highly phosphorylated state, understanding its expression and post-translational modifications represents an important avenue for future research towards the development of AD treatment and prevention.  相似文献   

6.
FTDP-17 missense tau mutations: G272V, P301L, V337M and R406W promote tau phosphorylation in human and transgenic mice brains by interfering with the tau phosphorylation/dephosphorylation balance. The effect of FTDP-17 mutations on tau phosphorylation by different kinases has been studied previously. However, it is not known how various FTDP-17 mutations affect tau dephosphorylation by phosphoprotein phosphatases. In this study we have observed that when transfected into HEK-293 cells, tau is phosphorylated on various sites that are also phosphorylated in diseased human brains. When transfected cells are lysed and incubated, endogenously phosphorylated tau is dephosphorylated by cellular protein phosphatase 1 (PP1), phosphatase 2A (PP2A) and phosphatase 2B (PP2B), which are also present in the lysate. By using this assay and specific inhibitors of PP1, PP2A and PP2B, we have observed that the G272V mutation promotes tau dephosphorylation by PP2A at Ser(396/404), Ser(235), Thr(231), Ser(202/205) and Ser(214) and by PP2B at Ser(214) but inhibits dephosphorylation by PP2B at Ser(396/404). The P301L mutation promotes tau dephosphorylation at Thr(231) by PP1 and at Ser(396/404), Thr(231), Ser(235) and Ser(202/205) by PP2A but inhibits dephosphorylation at Ser(214) by PP2B. The V337M mutation promotes tau dephosphorylation at Ser(235), Thr(231) and Ser(202/205) by PP2A and at Ser(202/205) by PP2B whereas the R406W mutation promotes tau dephosphorylation at Ser(396/404) by PP1, PP2A and PP2B but inhibits dephosphorylation at Ser(202/205) and Ser(235) by PP1 and PP2A, respectively. Our results indicate that each FTDP-17 tau mutation not only site-specifically inhibits tau dephosphorylation on some sites but also promotes dephosphorylation by phosphatases on other sites.  相似文献   

7.
The most characteristic cellular change in Alzheimer's disease is the accumulation of aberrant filaments, the paired helical filaments (PHF), in the affected neurons. There is growing evidence from a number of laboratories that dementia correlates better with the accumulation of PHF than of the extracellular amyloid, the second major lesion of Alzheimer's disease. PHF are both morphologically and biochemically unlike any of the normal neurofibrils. The major polypeptides in isolated PHF are microtubule-associated protein tau. Tau in PHF is phosphorylated differently from tau in microtubules. This abnormal phosphorylation of tau in PHF occurs at several sites. The accumulation of abnormally phosphorylated tau in the affected neurons in Alzheimer's disease brain precedes both the formation and the ubiquitination of the neurofibrillary tangles. In Alzheimer's disease brain, tubulin is assembly competent, but the in vitro assembly of microtubules is not observed. In vitro, the phosphate groups in PHF are less accessible than those of tau to alkaline phosphatase. The in vitro dephosphorylated PHF polypeptides stimulate microtubule assembly from bovine tubulin. It is hypothesized that a defect in the protein phosphorylation/dephosphorylation system is one of the earliest events in the cytoskeletal pathology in Alzheimer's disease. Production of nonfunctional tau by its phosphorylation and its polymerization into PHF most probably contributes to a microtubule assembly defect, and consequently, to a compromise in both axoplasmic flow and neuronal function. Index Entries: Alzheimer's disease; mechanisms of neuronal degeneration; neurofibrillary changes; paired helical filaments: biochemistry; microtubule-associated protein tau; abnormal phosphorylation; ubiquitination; microtubule assembly; axoplasmic flow; protein phosphorylation/dephosphorylation.  相似文献   

8.
Hyperphosphorylated isoforms of the microtubule-associated protein tau are the major components of neurofibrillary lesions in Alzheimer's disease (AD). Protein phosphatase (PP) 2A is a major phosphatase implicated in tau dephosphorylation in vitro. Dephosphorylation of tau can be blocked in vivo by okadaic acid, a potent inhibitor of PP2A. Moreover, activity of PP2A is reduced in AD brains. To elucidate the role of PP2A in tau phosphorylation and pathogenesis, we expressed a dominant negative mutant form of the catalytic subunit Calpha of PP2A, L199P, in mice by using a neuron-specific promoter. We obtained mice with high expression levels of Calpha L199P in cortical, hippocampal, and cerebellar neurons. PP2A activity in brain homogenates of transgenic mice was reduced to 66%. Endogenous tau protein was hyperphosphorylated at distinct sites including the AT8 epitope Ser-202/Thr-205, a major AD-associated tau phosphoepitope. AT8-positive tau aggregates accumulated in the soma and dendrites of cortical pyramidal cells and cerebellar Purkinje cells and co-localized with ubiquitin. Our data establish that PP2A plays a crucial role in tau phosphorylation. Our results also show that reduced PP2A activity is associated with altered compartmentalization and ubiquitination of tau, resembling a key pathological finding in AD.  相似文献   

9.
Coding region and intronic mutations in the tau gene cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We have previously reported that ABalphaC, a major form of protein phosphatase 2A (PP2A) in brain, binds tightly to tau protein in vitro and is a major tau phosphatase in vivo. Using in vitro assays, we show here that the FTDP-17 mutations G272V, DeltaK280, P301L, P301S, S305N, V337M, G389R, and R406W inhibit by approximately 20-95% the binding of recombinant three-repeat and four-repeat tau isoforms to the ABalphaC holoenzyme and the AC core enzyme of PP2A. Reduction in binding was maximal for tau proteins with the G272V, DeltaK280, and V337M mutations. We also show that tau protein can be specifically coimmunoprecipitated with endogenous PP2A from both rat brain and transfected cell extracts. It is significant that, by using similar coimmunoprecipitation assays, we show that all FTDP-17 mutations tested, including the N279K mutation, alter the ability of tau to associate with cellular PP2A. Taken together, these results indicate that FTDP-17 mutations induce a significant decrease in the binding affinity of tau for PP2A in vivo. We propose that altered protein-protein interactions between PP2A and tau may contribute to FTDP-17 pathogenesis.  相似文献   

10.
The major constituent of Alzheimer's disease paired helical filaments (PHF) core is intrinsically disordered protein (IDP) tau. In spite of a considerable effort, insoluble character of PHF together with inherent physical properties of IDP tau have precluded so far reconstruction of PHF 3D structure by X-ray crystallography or NMR spectroscopy. Here we present first crystallographic study of PHF core C-terminus. Using monoclonal antibody MN423 specific to the tertiary structure of the PHF core, the in vivo PHF structure was imprinted into recombinant core PHF tau. Crystallization of the complex led to determination of the structure of the core PHF tau protein fragment 386TDHGAE391 at 1.65A resolution. Structural analysis suggests important role of the core PHF C-terminus for PHF assembly. It is reasonable to expect that this approach will help to reveal the structural principles underlying the tau protein assembly into PHF and possibly will facilitate rationale drug design for inhibition of Alzheimer neurofibrillary changes.  相似文献   

11.
In the brains of Alzheimer's disease patients, the tau protein dissociates from the axonal microtubule and abnormally aggregates to form a paired helical filament (PHF). One of the priorities in Alzheimer research is to determine the effects of abnormal phosphorylation on the local structure. A series of peptides corresponding to isolated regions of tau protein have been successfully synthesized using Fmoc-based chemistry and their conformations were determined by 1H NMR spectroscopy and circular dichroism (CD) spectroscopy. Immunodominant peptides corresponding to tau-(256-273), tau-(350-367) and two phosphorylated derivatives in which a single Ser was phosphorylated at positions 262 and 356, respectively, were the main focus of the study. A direct alteration of the local structure after phosphorylation constitutes a new strategy through which control of biological activity can be enforced. In our study on Ser262 in R1 peptide and Ser356 in R4 peptide, phosphorylation modifies both the negative charge and the local conformation nearby the phosphorylation sites. Together, these structural changes indicate that phosphorylation may act as a conformational switch in the binding domain of tau protein to alter specificity and affinity of binding to microtubule, particularly in response to the abnormal phosphorylation events associated with Alzheimer's disease.  相似文献   

12.
Protein phosphatase 5 (PP5) is a 58-kDa novel phosphoseryl/phosphothreonyl protein phosphatase. It is ubiquitously expressed in all mammalian tissues examined, with a high level in the brain, but little is known about its physiological substrates. We found that this phosphatase dephosphorylated recombinant tau phosphorylated with cAMP-dependent protein kinase and glycogen synthase kinase-3beta, as well as abnormally hyperphosphorylated tau isolated from brains of patients with Alzheimer's disease. The specific activity of PP5 toward tau was comparable to those reported with other protein substrates examined to date. The PP5 activity toward tau was stimulated by arachidonic acid by 30- to 45-fold. Immunostaining demonstrated that PP5 was primarily cytoplasmic in PC12 cells and in neurons of postmortem human brain tissue. A small pool of PP5 associated with microtubules. Expression of active PP5 in PC12 cells resulted in reduced phosphorylation of tau, suggesting that PP5 can also dephosphorylate tau in cells. These results suggest that PP5 plays a role in the dephosphorylation of tau and might be involved in the molecular pathogenesis of Alzheimer's disease.  相似文献   

13.
Recent evidence from several laboratories shows that the paired helical filaments of Alzheimer's disease brains consist mainly of the protein tau in an abnormally phosphorylated form, but the mode of assembly is not understood. Here we use EM to study several constructs derived from human brain tau and expressed in Escherichia coli. All constructs or tau isoforms are rodlike molecules with a high tendency to dimerize in an antiparallel fashion, as shown by antibody labeling and chemical crosslinking. The length of the rods is largely determined by the region of internal repeats that is also responsible for microtubule binding. One unit length of the repeat domain (three or four repeats) is around 22-25 nm, comparable to the cross-section of Alzheimer PHF cores. Constructs corresponding roughly to the repeat region of tau can form synthetic paired helical filaments resembling those from Alzheimer brain tissue. A similar self-assembly occurs with the chemically cross-linked dimers. In both cases there is no need for phosphorylation of the protein.  相似文献   

14.
Pathological changes in the microtubule associated protein tau, leading to tau-containing filamentous lesions, are a major hallmark common to many types of human neurodegenerative diseases, including Alzheimer's disease (AD). No structural data are available which could rationalize the extensive conformational changes that occur when tau protein is converted to Alzheimer's paired helical filaments (PHF). The C-terminal portion of tau plays a crucial role in the aggregation of tau into PHF and in the truncation process that generates cytotoxic segments of tau. Therefore, we investigated the solution structure of the hydrophobic C-terminal segment 423-441 of tau protein (PQLATLADEVSASLAKQGL) by 1H 2D NMR spectroscopy. The peptide displays the typical NMR evidence consistent with a alpha-helix geometry with a stabilizing C-capping motif. The reported data represent the first piece of structural information on an important portion of the molecule and can have implications towards the understanding of its pathophysiology.  相似文献   

15.
The predominant brain microtubule-associated proteins MAP2 and tau play a critical role in microtubule cytoskeletal organization and function. We have previously reported that PP2A/Bα, a major protein phosphatase 2A (PP2A) holoenzyme, binds to and dephosphorylates tau, and regulates microtubule stability. Here, we provide evidence that MAP2 co-purifies with and is dephosphorylated by endogenous PP2A/Bα in bovine gray matter. It co-localizes with PP2A/Bα in immature and mature human neuronal cell bodies. PP2A co-immunoprecipitates with and directly interacts with MAP2. Using in vitro binding assays, we show that PP2A/Bα binds to MAP2c isoforms through a region encompassing the microtubule-binding domain and upstream proline-rich region. Tau and MAP2 compete for binding to and dephosphorylation by PP2A/Bα. Remarkably, the protein-tyrosine kinase Fyn, which binds to the proline-rich RTPPKSP motif conserved in both MAP2 and tau, inhibits the interaction of PP2A/Bα with either tau or MAP2c. The corresponding synthetic RTPPKSP peptide, but not the phosphorylated RpTPPKSP version, competes with Tau and MAP2c for binding to PP2A/Bα. Significantly, down-regulation of PP2A/Bα and deregulation of Fyn-Tau protein interactions have been linked to enhanced tau phosphorylation in Alzheimer disease. Together, our results suggest that PP2A/Bα is part of segregated MAP2 and tau signaling scaffolds that can coordinate the action of key kinases and phosphatases involved in modulating neuronal plasticity. Deregulation of these compartmentalized multifunctional protein complexes is likely to contribute to tau deregulation, microtubule disruption, and altered signaling in tauopathies.  相似文献   

16.
Paired helical filaments (PHF) are unusual neuronal fibers which accumulate progressively in the brain in Alzheimer's disease (AD). The insolubility of PHF in various kinds of solvents enabled us to obtain highly purified PHF, but prevented the application of conventional analytical methods to identify their components. Here we report that antibodies against purified PHF recognize tau protein, a brain-specific microtubule-associated protein, suggesting that a portion of PHF is tau protein.  相似文献   

17.
Inoue M  Hirata A  Tainaka K  Morii T  Konno T 《Biochemistry》2008,47(45):11847-11857
Phosphorylation of a fibrillogenic protein, human tau, is believed to play crucial roles in the pathogenesis of Alzheimer's disease. For elucidating molecular mechanisms of the phosphorylation effect on tau fibrillation, we synthesized a peptide, VQIVY 310K (PHF6) and its phosphorylated derivative (PHF6pY). PHF6 is a partial peptide surrounding a plausible in vivo phosphorylation site Tyr310 and forms amyloid-type fibrils similar to those generated by full-length tau. Fibrillation of PHF6 and PHF6pY were studied by spectroscopic and microscopic methods, and the critical concentration of the fibrillation was determined for comparing the fibril stability. The results showed that the phosphorylation strongly influenced the fibrillation propensity of PHF6 by changing its dependency on pH and ionic strength. On the basis of the observations, we suggested that charged sites on the phosphate group and its electrostatic pairing with the neighboring charged residues were physical origins of the phosphorylation effect. To verify this charge-pairing mechanism, we conducted experiments using a series of PHF6 derivatives with non-native charge distributions. The electrostatic interaction in an intermolecular mode was also demonstrated by the system composed of two different peptide species, which found that fibrillation of nonphosphorylated PHF6 was drastically enhanced when a trace amount of phosphorylated PHF6 molecules coexisted. A simulation analysis utilizing crystal coordinates of the PHF6 fibril was also performed for interpreting the experimental results in a molecular level. The present study using the model peptide system gave us a microscopically insightful view on the roles of tau phosphorylation in amyloid-related diseases.  相似文献   

18.
Hyperphosphorylated forms of the neuronal microtubule (MT)-associated protein tau are major components of Alzheimer's disease paired helical filaments. Previously, we reported that ABalphaC, the dominant brain isoform of protein phosphatase 2A (PP2A), is localized on MTs, binds directly to tau, and is a major tau phosphatase in cells. We now describe direct interactions among tau, PP2A, and MTs at the submolecular level. Using tau deletion mutants, we found that ABalphaC binds a domain on tau that is indistinguishable from its MT-binding domain. ABalphaC binds directly to MTs through a site that encompasses its catalytic subunit and is distinct from its binding site for tau, and ABalphaC and tau bind to different domains on MTs. Specific PP2A isoforms bind to MTs with distinct affinities in vitro, and these interactions differentially inhibit the ability of PP2A to dephosphorylate various substrates, including tau and tubulin. Finally, tubulin assembly decreases PP2A activity in vitro, suggesting that PP2A activity can be modulated by MT dynamics in vivo. Taken together, these findings indicate how structural interactions among ABalphaC, tau, and MTs might control the phosphorylation state of tau. Disruption of these normal interactions could contribute significantly to development of tauopathies such as Alzheimer's disease.  相似文献   

19.
Protein phosphatase (PP) 5 is highly expressed in the mammalian brain, but few physiological substrates have yet been identified. Here, we investigated the kinetics of dephosphoryation of phospho-tau by PP5 and found that PP5 had a K(m) of 8-13 microm toward tau, which is similar to that of PP2A, the major known tau phosphatase. This K(m) value is within the range of intraneuronal tau concentration in human brain, suggesting that tau could be a physiological substrate of both PP5 and PP2A. PP5 dephosphorylated tau at all 12 Alzheimer's disease (AD)-associated abnormal phosphorylation sites studied, with different efficiency toward each site. Thr(205), Thr(212), and Ser(409) of tau were the most favorable sites; Ser(199), Ser(202), Ser(214), Ser(396), and Ser(404) were less favorable sites; and Ser(262) was the poorest site for PP5. Overexpression of PP5 in PC12 cells resulted in dephosphorylation of tau at multiple phosphorylation sites. The activity but not the protein level of PP5 was found to be decreased by approximately 20% in AD neocortex. These results suggest that tau is probably a physiological substrate of PP5 and that the abnormal hyperphosphorylation of tau in AD might result in part from the decreased PP5 activity in the diseased brains.  相似文献   

20.
Abnormal phosphorylation of tau protein represents one of the major candidate pathological mechanisms leading to Alzheimer's disease (AD) and related tauopathies. Altered phosphorylation status of neuronal tau protein may result from upregulation of tau-specific kinases or from inhibition of tau-specific phosphatases. Increased expression of the protein inhibitor 1 of protein phosphatase 2A (I1PP2A) could therefore indirectly regulate the phosphorylation status of tau. As an important step towards elucidation of the role of I1PP2A in the physiology and pathology of tau phosphorylation, we developed a novel monoclonal antibody, DC63, which recognizes I1PP2A. Specificity of the antibody was examined by mass spectrometry and Western blot. This analysis supports the conclusion that the antibody does not recognize any of the other proteins of the 9-member leucine-rich acidic nuclear phosphoprotein family to which I1PP2A belongs. Immunoblot detection revealed that the inhibitor I1PP2A is expressed throughout the brain, including the hippocampus, temporal cortex, parietal cortex, subcortical nuclei and brain stem. The cerebellum displayed significantly higher levels of expression of I1PP2A than was seen elsewhere in the brain. Imunohistochemical analysis of normal human brain showed that I1PP2A is expressed in both neurons and glial cells and that the protein is preferentially localized to the nucleus. We conclude that the novel monoclonal antibody DC63 could be successfully employed as a mass spectrometry-validated molecular probe that may be used for in vitro and in vivo qualitative and quantitative studies of physiological and pathological pathways involving I1PP2A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号