首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Strains of Halobacteria from an Algerian culture collection were screened for their lipolytic activity against p-nitrophenyl butyrate (PNPB) and p-nitrophenyl palmitate (PNPP). Most strains were active on both esters and 12% hydrolyzed olive oil. A strain identified as Natronococcus sp. was further studied. It grew optimally at 3.5 M NaCl, pH 8 and 40 degrees C. An increase in temperature shifted the optimum salt concentration range for growth from a wider range of 2-4 M, obtained at 25-30 degrees C, to a narrower range of 3.5-4 M, obtained at 35-40 degrees C. At 45 degrees C the optimum salt concentration was 2 M. These results show a clear correlation between salt and temperature requirement. The optimum conditions for the production of hydrolytic activity during growth were: 3.5 M NaCl and pH 8 for PNPB hydrolytic activity and 4 M NaCl and pH 7.5 for PNPP hydrolytic activity; both at 40 degrees C. The clear supernatant of cells grown at 4 M NaCl showed olive oil hydrolysis activity (in presence of 4 M NaCl) demonstrating the occurrence of a lipase activity in this strain. To our knowledge, this is the first report of a lipase activity at such high salt concentration.  相似文献   

2.
A Na(+)/H(+) antiporter gene was isolated from alkaliphilic Bacillus sp. G1. The full-length sequence of the Na(+)/H(+) antiporter gene was obtained using a genome walking method, and designated as g1-nhaC. An ORF preceded by a promoter-like sequence and a Shine-Dalgarno sequence, and followed by a terminator-like sequence was identified. The deduced amino acid sequence consists of 535 amino acids, and a calculated molecular mass of 57 776 Da. g1-nhaC was subsequently cloned into pET22b(+) and expressed in Escherichia coli BL21 (DE3). Recombinant E. coli harboring the g1-nhaC gene was able to grow in modified L medium at various concentrations of NaCl (0.2-2.0 M) at different pH values. The recombinant bacteria grew well in the medium with concentrations of NaCl as high as 1.75 M at pH 8.0-9.0. Minimal growth was observed at 2.0 M NaCl, pH 8.0-9.0. At pH 10, the recombinant bacteria grew well in a medium with a low concentration of NaCl (0.2 M). These results suggested that the g1-NhaC antiporter from Bacillus sp. G1 plays a role in Na(+) extrusion at lower pH values and in pH homeostasis at pH 10 under Na(+)-limiting conditions.  相似文献   

3.
The influence of the ionic strength on the structure of beta-lactoglobulin aggregates formed after heating at pH 7 has been studied using static and dynamic light scattering. The native protein depletion has been monitored using size exclusion chromatography. Above a critical association concentration (CAC) well-defined clusters are formed containing about 100 monomers. The CAC increases with decreasing ionic strength. The so-called primary aggregates associate to form self similar semi-flexible aggregates with a large scale structure that is only weakly dependent on the ionic strength. The local density of the aggregates increases with increasing ionic strength. At a critical gel concentration, Cg, the size of the aggregates diverges. Cg decreases from 100 g/l without added salt to 1 g/l at 0.4M NaCl. For C > Cg the system gels except at high ionic strength close to Cg where the gels collapse under gravity and a precipitate is formed.  相似文献   

4.
The capability of Halobacterium sp. NRC-1 to synthesize carboxyl ester hydrolases was investigated, and the effect of physicochemical conditions on the growth rate and production of esterases was evaluated. The haloarchaeon synthesized a carboxyl ester hydrolase, confirming the genomic prediction. This enzymatic activity was intracellularly produced as a growth-associated metabolite. Esterase activity was assayed using different p-nitrophenyl-esters and triacyl-glycerides, which showed a preference for hydrolyzing tributyrin. The archaeal growth rate and esterase production were significantly influenced by the pH and the NaCl concentration. An interaction effect between temperature and NaCl was also seen. The maximal growth rate and esterase production found for Halobacterium sp. NRC-1 were 0.136 h−1 (at 4.2 M NaCl, pH 6 and 44°C) and 1.64 U/l (at 4.6 M NaCl, pH 6 and 30°C), respectively. Furthermore, the effects of NaCl concentration, pH and temperature on enzyme activity were studied. Two maximal esterase activities were elucidated from the intracellular crude extract when it was incubated at different NaCl concentrations (1 M and 5 M) and at different pHs (6 and 7.5). This is the first report that shows experimentally the synthesis of carboxyl ester hydrolases by Halobacterium sp. NRC-1. This enzyme was found to be extremely halophilic (5 M NaCl) and thermophilic (80°C), making it very interesting for future investigations in non-aqueous biocatalysis.  相似文献   

5.
对不同浓度、温度、pH、NaCl浓度条件下,银耳粗多糖对桉叶油的乳化能力,以及乳化体系的稳定性进行了研究。结果表明,银耳粗多糖对桉叶油的乳化性随浓度增大上升,在浓度1%时达到最大,随后呈下降趋势;在pH 4.0~8.0之间;有较好的乳化性及乳化稳定性,在此范围以外,随pH的升高、降低,银耳粗多糖的乳化和乳化性均呈下降趋势;随着温度和NaCl浓度升高,银耳粗多糖的乳化活性和乳化稳定性有所降低。  相似文献   

6.
Escherichia coli is able to grow at increased NaCl concentrations that provides an increase in medium osmolarity and cellular Na+ content. The addition of 0.5 M NaCl to the growth medium led to a substantial decrease in growth rate during anaerobic fermentation on glucose at pH of 7.3 or 9.0. This inhibitory effect of 0.5 M NaCl was at least threefold stronger than that seen under aerobic conditions, and stronger than equivalent concentrations of sucrose, KCl, or potassium glutamate under anaerobic conditions. Further, proline was found to stimulate the growth rate at high NaCl concentration under anaerobic and to a lesser extent, under aerobic conditions. Wild-type cells and mutants having a functional NhaA or ChaA alone grown under anaerobic conditions at pH 9.0 and subsequently loaded with Na+ were shown to extrude Na+ at a rate that were lower than the extrusion rate reported for appropriate aerobically grown bacteria (Sakuma et al. [1998] Biochim Biophys Acta 1363:231–237). The growth rate and Na+ extrusion activity of a mutant having a functional NhaA were similar to that of the wild type and higher than that of a mutant with an active ChaA. A mutant defective for both NhaA and ChaA was unable to grow under anaerobic conditions at pH 9.0 in the presence of 0.15 M Na+. It is suggested that the observed strong inhibition in the growth of E. coli during fermentation under anaerobic conditions in the presence of increased NaCl concentration could be due to a decrease in Na+ extrusion activity. Received: 18 September 1998 / Accepted: 2 April 1999  相似文献   

7.
The interaction of temperature (4, 10, 18, and 30°C), pH (6, 7, and 8), and NaCl (0, 2.5, and 5%) and their effects on specific growth rate, lag phase, and pectinolytic enzymes of Pseudomonas marginalis were evaluated. Response surface methodology was adapted to describe the response of growth parameters to environmental changes. To obtain good conditions of storage, the combined action of salt and temperature is necessary. At 4°C with an NaCl concentration of 5% and a pH of 7, the lag time was 8 days and no growth was observed at 4°C with 5% NaCl and a pH of 6. In the absence of salt, P. marginalis could grow regardless of temperature and pH. Pectate lyase and pectin lyase were produced by P. marginalis, while pectin methyl esterase activity was not observed in our culture conditions. The enzyme production depended on temperature, pH, and salt concentration but also on the age of the culture. Pectinolytic enzymes were abundantly excreted during the stationary phase, and even at 4°C, after 2 weeks of storage, enzyme activities in supernatant culture were sufficient to damage vegetables. Both bacterial growth and enzymatic production have to be taken into account in order to estimate correctly the shelf life of vegetables.  相似文献   

8.
Soil salinization and alkalinization frequently co-occur in naturally saline and alkaline soils. To understand the characteristics of mixed salt-alkali stress and adaptive response of Medicago ruthenica seedlings to salt-alkali stress, water content of shoots, growth and photosynthetic characteristics of seedlings under 30 salt-alkaline combinations (salinity 24–120 mM and pH 7.03–10.32) with mixed salts (NaCl, Na2SO4, NaHCO3, and Na2CO3) were examined. The indices were significantly affected by both salinity and pH. The interactive effects between salt and alkali stresses were significant, except for photosynthetic pigments. Water content of shoots, relative growth rates of shoots and roots and pigment concentrations showed decreasing trends with increasing salinity and alkalinity. The root activity under high alkalinity and salinity treatments gradually decreased, but was stimulated by the combined effects of low alkalinity and salinity. The survival rate decreased with increased salinity, except at pH 7.03–7.26 when all plants survived. Net photosynthetic rate, stomatal conductance and intercellular CO2 concentration decreased with increased salinity and pH. M. ruthenica tolerated the stress of high salt concentration when alkali concentration was low, and the synergistic effects of high alkali and high salt concentrations lead to the death of some or all seedlings. M. ruthenica appeared to be saltalkali tolerant. Reducing the salt concentration or pH based on the salt components in the soil may be helpful to abate damage from mixed salt-alkaline stress.  相似文献   

9.
不同生态型摩西球囊霉菌株对棉花耐盐性的影响   总被引:6,自引:0,他引:6  
在盆栽条件下研究了4个NaCl水平下(0、1、2和3g/kg)接种丛枝菌根真菌Glomus mosseae的2个菌株M1和M2对棉花耐盐性的影响。M1自非盐渍土壤分离,M2自盐渍土壤分离。结果表明,不同盐水平下2个菌株对棉花根系的侵染率为20%~40%,M2的侵染率高于M1;这两个菌株对棉花在盐胁迫环境下的生长状况都有一定的促进,其中Ml的促进作用明显大于M2的,并且在NaCl水平为2和3g/kg时,两菌株对棉花生长的效应之间的差异达到极显著水平。进一步的分析表明两菌株对植株吸收矿质元素的作用方面存在一定差异。接种M1的植株含磷量在4个盐水平下均显著高于对照,而接种M2处理的植株含磷量只是在0和1g/kg NaCl时显著高于对照。在2和3g/kg NaCl时略低于对照,并显著低于接种M1处理的。在4个NaCl水平下,接种M1的植株钠和氯含量与对照没有显著差异;接种M2的植株氯含量在1~3g/kg 3个NaCl水平下、钠含量在2和3g/kg 2个NaCl水平下不仅显著高于对照,同时也显著高于接种M1的植株氯和钠含量。这些差异是M1和M2两菌株对提高棉花耐盐性作用大小不同的主要原因。上述结果说明不同生态型AM真菌菌株对植物的耐盐性的影响力不同,这与真菌自身的生物学特性有关。  相似文献   

10.
Extraction, concentration, and serological detection of staphylococcal enterotoxins from foods are laborious and time consuming. By exposing food extracts to an insoluble matrix tagged with specific anti-enterotoxin B, we have been able to recover the toxin from foods in a sensitive and rapid way. After mixing the reagents for 2 h at room temperature, immunoglobulin G antibodies were attached to CNBr-activated Sepharose 4B at pH 8.5 (0.1 M carbonate buffer with 0.5 M NaCl). Sepharose-antibody complex (1 ml) specifically recovered 0.1 to 30 mug of enterotoxin B from 400 ml of food extract (100 g of food) after mixing for 2 h at 4 C. The Sepharose-antibody-toxin complex was washed with 0.02 M phosphate-buffered saline at pH 7.2, and the toxin was dissociated by 2 to 4 ml of 0.2 M HCl-glycine plus 0.5 M NaCl buffer at pH 2.8. The recovered enterotoxin was free of interfering food components and could be detected serologically. Work to couple antibodies A, B, C, D, and E to Sepharose to recover all five toxins in one step is under study.  相似文献   

11.
The interactions of pH (5.0, 6.0, and 7.0), temperature (19, 28, and 37 degrees C), and atmosphere (aerobic versus anaerobic) with NaCl (0, 1, 2, 3, 4, and 5%) on the growth of Salmonella typhimurium ATCC 14028 in defined glucose-mineral salts culture medium were evaluated. Response surface methodology was used to develop equations describing the response of S. typhimurium to environmental changes. The response to an increasing concentration of NaCl at any temperature tested was nonlinear. The maximum growth was predicted to occur at an NaCl concentration of 0.5%, a temperature of 19 degrees C, and an initial pH of 7.0 under aerobic growth conditions. The relative amounts of aerobic growth at 19 degrees C, pH 7.0, and NaCl concentrations of 0, 0.5, 1, 2, 3, 4, and 5% were predicted to be 99.2, 100.0, 98.8, 90.2, 73.5, 48.6, and 15.6%, respectively. Anaerobic growth conditions repressed the amount of growth relative to that under aerobic conditions, and the effects of NaCl and pH were additive at low salt concentrations; however, at higher salt levels anaerobiosis provided protection against the effects of NaCl.  相似文献   

12.
The interactions of pH (5.0, 6.0, and 7.0), temperature (19, 28, and 37 degrees C), and atmosphere (aerobic versus anaerobic) with NaCl (0, 1, 2, 3, 4, and 5%) on the growth of Salmonella typhimurium ATCC 14028 in defined glucose-mineral salts culture medium were evaluated. Response surface methodology was used to develop equations describing the response of S. typhimurium to environmental changes. The response to an increasing concentration of NaCl at any temperature tested was nonlinear. The maximum growth was predicted to occur at an NaCl concentration of 0.5%, a temperature of 19 degrees C, and an initial pH of 7.0 under aerobic growth conditions. The relative amounts of aerobic growth at 19 degrees C, pH 7.0, and NaCl concentrations of 0, 0.5, 1, 2, 3, 4, and 5% were predicted to be 99.2, 100.0, 98.8, 90.2, 73.5, 48.6, and 15.6%, respectively. Anaerobic growth conditions repressed the amount of growth relative to that under aerobic conditions, and the effects of NaCl and pH were additive at low salt concentrations; however, at higher salt levels anaerobiosis provided protection against the effects of NaCl.  相似文献   

13.
The growth of a strain ofD. viridis has been studied in batch culture under different combinations of temperature, salinity and nitrogen concentrations. Changes in these variables have a significant effect on cell division, biomass production, cell volume and pigment yield. This strain grows optimally at 1 M NaCl and 30 °C. Increasing salinity up to 4 M NaCl leads to a significant decrease of cell division rate and maximal population; growth at lower temperature decreases the rate of division of the cells but increases maximal cell density. Pigment yield decreases with increasing salinity and increases with increasing temperature. Nitrogen concentration has a large effect on total cell biomass and pigment production, but not on cell division rate. Saturation of growth occurs at 5 mM NO 3 ? ; higher concentration (e.g. 10 mM) leads to a decrease of maximal cell density and photosynthetic pigment content.  相似文献   

14.
AIMS: To investigate the effects of the salt concentration, incubation temperature and initial pH of the medium on the fermentative ability of the halophilic lactic acid bacteria, Tetragenococcus muriaticus and T. halophilus. METHOD AND RESULTS: The growth, lactic acid production and pH reduction ability of five strains of T. muriaticus and T. halophilus in MRS broth medium under various culture conditions such as salt concentration (3, 7, 15 and 23% NaCl), temperature (20, 30 and 40 degrees C), and initial medium pH (5.8, 6.5 and 7.5) were investigated. Those of T. halophilus were seriously affected by a high salinity (23% NaCl); in contrast, those of T. muriaticus were affected by a low initial pH (5.8). CONCLUSIONS: The results indicate that high saline concentrations and low pH values have significant impact on the growth, lactic acid production and pH reduction ability of T. halophilus and T. muriaticus, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: This study appears to be important in biopreservation during the manufacture of fermented food products. Both T. muriaticus and T. halophilus may support each other in reducing pH in hypersaline or low pH environment. To our knowledge, this is the first report on the fermentation ability of T. muriaticus.  相似文献   

15.
A simple preparation method for biocompatible nanoparticles in high concentration (0.5 wt %) by self-assembly of chitosan and carboxymethyl cellulose hydrolysates was developed. Chitosan and carboxymethyl cellulose were hydrolyzed beforehand with chitosanase and cellulase respectively to make fragments having lower molecular weights. Nanoparticles were spontaneously formed only by mixing the two hydrolysate solutions. The particle size distribution was relatively narrow, about 200 nm in mean size. The mean particle size decreased from 226 nm to 165 nm with decreasing molecular weight of chitosan hydrolysate from 9.5 to 6.8 kDa. The mixing ratio of chitosan and carboxymethyl cellulose hydrolysates also affected particle size. Changes in particle size are discussed in relation to a possible mechanism of polyionic complexation. The chitosan-carboxymethyl cellulose nanoparticles were stably suspended over 1 week even under low pH (pH 3.0), high ionic strength (NaCl 1 M), or low temperature (4 degrees C) conditions.  相似文献   

16.
An extremely halophilic Chromohalobacter sp. TVSP101 was isolated from solar salterns and screened for the production of extracellular halothermophilic protease. Identification of the bacterium was done based upon biochemical tests and the 16S rRNA sequence. The partially purified enzyme displayed maximum activity at pH 8 and required 4.5 M of NaCl for optimum proteolytic activity. In addition, this enzyme was thermophilic and active in broad range of temperature 60–80°C with 80°C as optimum. The Chromohalobacter sp. required 4 M NaCl for its optimum growth and protease secretion and no growth was observed below 1 M of NaCl. The initial pH of the medium for growth and enzyme production was in the range 7.0–8.0 with optimum at pH 7.2. Various cations at 1 mM concentration in the growth medium had no significant effect in enhancing the growth and enzyme production but 0.5 M MgCl2 concentration enhanced enzyme production. Casein or skim milk powder 1% (w/v) along with 1% peptone proved to be the best nitrogen sources for maximum biomass and enzyme production. The carbon sources glucose and glycerol repressed the protease secretion. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of halophilic protease.  相似文献   

17.
The haptophyte microalga Tisochrysis lutea was heterotrophically grown in F2 medium with different combinations of pH and salinity. Growth, oil content and fatty acids (FAs) profile were determined under each set of conditions. The salinity was adjusted using NaCl at concentrations of 0.4, 0.6, 0.8, or 1.0 M, while pH was adjusted at 7, 8, or 9, and heterotrophic growth was performed using organic carbon in the form of sugar cane industry waste (CM). Fatty acid methyl esters (FAMEs) were identified by gas chromatography. The results showed that pH of 8.0 was the optimal for dry weight and oil production, regardless of the salinity level. At pH 8.0, growth at a salinity of 0.4 M NaCl was optimal for biomass accumulation (1.185 g L-1). Under these conditions, the maximum growth rate was 0.055 g L-1 d-1, with a doubling time of 17.5 h and a degree of multiplication of 2.198. Oil content was maximal (34.87%) when the salinity was 0.4 M and the pH was 9.0. The ratio of saturated to unsaturated FAs was affected by the pH value and salinity, in that unsaturated FAs increased to 58.09% of the total FAs, considerably greater than the value of 40.59% obtained for the control (0.4 M NaCl and pH 8.0).  相似文献   

18.
The cell suspension culture Daucus carota L. was permeabilized by Tween 80 and immobilized by glutaraldehyde. β-Galactosidase showed an optimum pH of 4.7 and an optimum temperature of 55 °C. The enzyme hydrolysis was linear for 3 h, reaching a 65% conversion. A very good level of storage stability was achieved when using dry catalyst, or a solution of 0.15 M NaCl with the addition of chloramphenicol, (l-methyldodecyl)-dimethylamin-4-oxide (ATDNO), chlortetracycline hydrochloride (CLCTC) or by freezing the immobilized cells in 0.15 M NaCl. The cells characterized by high enzyme activity and stability in long-term storage showed convenient physicomechanical properties.  相似文献   

19.
Low pH and salt are two factors contributing to the inactivation of bacterial pathogens during a 60-day curing period for cheese. The kinetics of inactivation for Mycobacterium avium subsp. paratuberculosis strains ATCC 19698 and Dominic were measured at 20 degrees C under different pH and NaCl conditions commonly used in processing cheese. The corresponding D values (decimal reduction times; the time required to kill 1 log(10) concentration of bacteria) were measured. Also measured were the D values for heat-treated and nonheated M. avium subsp. paratuberculosis in 50 mM acetate buffer (pH 5.0, 2% [wt/vol] NaCl) and a soft white Hispanic-style cheese (pH 6.0, 2% [wt/vol] NaCl). Samples were removed at various intervals until no viable cells were detected using the radiometric culture method (BACTEC) for enumeration of M. avium subsp. paratuberculosis. NaCl had little or no effect on the inactivation of M. avium subsp. paratuberculosis, and increasing NaCl concentrations were not associated with decreasing D values (faster killing) in the acetate buffer. Lower pHs, however, were significantly correlated with decreasing D values of M. avium subsp. paratuberculosis in the acetate buffer. The D values for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese were higher than those predicted by studies done in acetate buffer. The heat-treated M. avium subsp. paratuberculosis strains had lower D values than the nonheated cells (faster killing) both in the acetate buffer (pH 5, 2% [wt/vol] NaCl) and in the soft white cheese. The D value for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese (36.5 days) suggests that heat treatment of raw milk coupled with a 60-day curing period will inactivate about 10(3) cells of M. avium subsp. paratuberculosis per ml.  相似文献   

20.
Data are reported for T(m), the temperature midpoint of the thermal unfolding curve, of ribonuclease A, versus pH (range 2-9) and salt concentration (range 0-1 M) for two salts, Na(2)SO(4) and NaCl. The results show stabilization by sulfate via anion-specific binding in the concentration range 0-0.1 M and via the Hofmeister effect in the concentration range 0.1-1.0 M. The increase in T(m) caused by anion binding at 0.1 M sulfate is 20 degrees at pH 2 but only 1 degree at pH 9, where the net proton charge on the protein is near 0. The 10 degrees increase in T(m) between 0.1 and 1.0 M Na(2)SO(4), caused by the Hofmeister effect, is independent of pH. A striking property of the NaCl results is the absence of any significant stabilization by 0.1 M NaCl, which indicates that any Debye screening is small. pH-dependent stabilization is produced by 1 M NaCl: the increase in T(m) between 0 and 1.0 M is 14 degrees at pH 2 but only 1 degree at pH 9. The 14 degree increase at pH 2 may result from anion binding or from both binding and Debye screening. Taken together, the results for Na(2)SO(4) and NaCl show that native ribonuclease A is stabilized at low pH in the same manner as molten globule forms of cytochrome c and apomyoglobin, which are stabilized at low pH by low concentrations of sulfate but only by high concentrations of chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号