首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cleavage of pBR322 DNA I by the restriction endonuclease HinfI is preferentially inhibited at specific HinfI cleavage sites. These sites in pBR322 DNA I have been identified and ordered with respect to the frequency with which they are cleaved. The HinfI site most resistant to cleavage in pBR322 DNA I is unique in that runs of G-C base pairs are immediately adjacent on both sites. Two differently permuted linear (DNA III) species were produced by cleavage with two different restriction endonucleases, PstI and AvaI. Only one of these linear molecules, that produced by PstI, exhibits the same preferential cleavage pattern as DNA I. The second linear species, that arising from AvaI digestion, shows pronounced relative inhibition of cleavage at the HinfI sites nearest the ends of the molecule (100 to 120 base pairs away, respectively). This result suggest that proximity to the termini of a linear DNA molecule might also influence preferential cleavage. The possibility of formation of stem-loop structures does not appear to influence preferential cleavage by HinfI.  相似文献   

2.
According to the current paradigm type IIE restriction endonucleases are homodimeric proteins that simultaneously bind to two recognition sites but cleave DNA at only one site per turnover: the other site acts as an allosteric locus, activating the enzyme to cleave DNA at the first. Structural and biochemical analysis of the archetypal type IIE restriction enzyme EcoRII suggests that it has three possible DNA binding interfaces enabling simultaneous binding of three recognition sites. To test if putative synapsis of three binding sites has any functional significance, we have studied EcoRII cleavage of plasmids containing a single, two and three recognition sites under both single turnover and steady state conditions. EcoRII displays distinct reaction patterns on different substrates: (i) it shows virtually no activity on a single site plasmid; (ii) it yields open-circular DNA form nicked at one strand as an obligatory intermediate acting on a two-site plasmid; (iii) it cleaves concertedly both DNA strands at a single site during a single turnover on a three site plasmid to yield linear DNA. Cognate oligonucleotide added in trans increases the reaction velocity and changes the reaction pattern for the EcoRII cleavage of one and two-site plasmids but has little effect on the three-site plasmid. Taken together the data indicate that EcoRII requires simultaneous binding of three rather than two recognition sites in cis to achieve concerted DNA cleavage at a single site. We show that the orthodox type IIP enzyme PspGI which is an isoschisomer of EcoRII, cleaves different plasmid substrates with equal rates. Data provided here indicate that type IIE restriction enzymes EcoRII and NaeI follow different mechanisms. We propose that other type IIE restriction enzymes may employ the mechanism suggested here for EcoRII.  相似文献   

3.
The localization of KpnI, SacI, XhoI, AvaI, PstI, BglI, BamHI, EcoRI, PmiI, SalI, BglII, restriction endonuclease cleavage sites in HindIII-F-fragments of DNA from vaccinia strains WR, Copenhagen, LIVP and neurovaccine has been detected. The fragments have been shown to differ in the number of AvaI, EcoRI and BamHI sites. The fragments also differ from the analogue of Tian Tan vaccinia strain in the pattern of restriction by AvaI, XhoI, PstI, EcoRI and BamHI endonucleases.  相似文献   

4.
Plasmid pMG1 encodes resistance to gentamicin, streptomycin, sulfonamides, and mercuric ions and also mobilizes pRO161, a transfer-deficient plasmid derived from RP1. Upon mobilization, pRO161 acquires streptomycin resistance (Smr) and can subsequently be remobilized by pMG1 at significantly higher frequencies than pRO161 itself. Both the initial acquisition of Smr and the subsequent mobilization of the transfer-deficient plasmid are recA independent: thus, the Smr determinant appears to be located on a transposon, disignated Tn904. Tn904 transposes to a variety of other plasmids, including RP1, FP2, R388, K, pRO1600, and pBR322, and in some cases the acquisition of this transposon accompanied deletions in the target plasmid. When no deletion occurred, target plasmids gained 5.2 kilobase pairs of DNA and new restriction endonuclease cleavage sites for AvaI, BglII, PstI, SmaI, and SstI. Physical analysis of such plasmids showed that the Tn904 termini are inverted repeat DNA sequences of approximately 124 base pairs. After cloning into vector pRO1723, a single site for restriction endonuclease AvaI was identified within the Smr determinant of Tn904. In Escherichia coli, but not in Pseudomonas aeruginosa. Tn904 shows a gene dosage-dependent expression of streptomycin resistance.  相似文献   

5.
ThaI (CGCG) sites which overlap HhaI (GCGC) sites in phi X174 and pBR322 DNA were methylated in vitro with HhaI methylase and S-adenosylmethionine to yield CGmCG, mCGCG or mCGmCG (5-methylcytosine, mC). Methylation of either cytosine in the ThaI recognition sequence rendered the DNA resistant to ThaI cleavage. Rat pituitary cell genomic DNA was digested with ThaI or 2 other known methylation-sensitive enzymes, AvaI or XhoI. After electrophoresis and ethidium bromide straining of the DNA, all 3 enzymes showed the infrequent DNA cleavage characteristic of methylation-sensitive enzymes. Comparison of pituitary growth hormone (GH) genes bearing strain-specific degrees of methylation showed the less methylated gene to be more frequently cut by either AvaI or ThaI. ThaI resistant sites in GH genes were cleaved by ThaI after exposing cells to 5-azacytidine, an inhibitor of DNA methylation. We conclude that ThaI is a useful restriction enzyme for the analysis of mC at CGCG sequences in eukaryotic DNA.  相似文献   

6.
The SalGI restriction endonuclease. Enzyme specificity.   总被引:5,自引:2,他引:3       下载免费PDF全文
We have analysed the kinetics of DNA cleavage in the reaction between the SalGI restriction endonuclease and plasmid pMB9. This reaction is subject to competitive inhibition by DNA sequences outside the SalGI recognition site; we have determined the Km and Vmax. for the reaction of this enzyme at its recognition site and the KI for its interaction at other DNA sequences. We conclude that the specificity of DNA cleavage by the enzyme is only partly determined by the discrimination it shows for binding at its recognition sequence compared with binding to other DNA sequences.  相似文献   

7.
The effect of binding of an antitumour drug cis-diamminedichloroplatinum(II) (cis-[Pt(NH3)2Cl2]) to DNA on cutting effectiveness of BamHI, EcoRI, and SalI restriction endonucleases was quantitatively determined. The platinum complex inhibits the cleavage of plasmid pHC624 DNA linearized by BglI restrictase. From the present results we conclude that the yield of restriction endonuclease cleavage is also lowered if the platinum complex is bound outside the recognition DNA sequence of these enzymes. We propose that the origin of platinum adducts on DNA outside the recognition sequence can decrease the yield of restriction enzyme cleavage via inducing a conformational perturbation in the recognition DNA sequence of these enzymes and also via inhibition of the linear diffusion of these enzymes on DNA.  相似文献   

8.
Biphasic, chimeric plasmids for the transformation of Agmenellum quadruplicatum PR-6 (Synechococcus sp. strain 7002) were constructed by splicing the 3.0-megadalton cryptic plasmid from strain PR-6 into plasmids pBR322 and pBR325 from Escherichia coli. Transformants of either E. coli or strain PR-6 by these plasmids could be detected on the basis of the drug resistance marker(s) carried by the chimeric plasmids. Plasmid DNA isolated from a PR-6 transformant transformed PR-6 much more efficiently than plasmid DNA prepared from E. coli. Plasmids from which the AvaI recognition site was deleted (AvaI is an isoschizomer of the AquI restriction endonuclease of strain PR-6) also transformed strain PR-6 much more efficiently than did plasmids containing the AvaI recognition site. These and other results suggest that AquI strongly effects plasmid transformation when the donor plasmid contains an unmodified AquI recognition site. Multimeric forms of the chimeric plasmids are also much more efficient at transforming strain PR-6 than are the analogous monomeric forms.  相似文献   

9.
A cleavage map of a recombinant plasmid carrying Tn10 was constructed for 13 different restriction enzymes. The Tn10 region of this plasmid contains cleavage sites for BamHI, AvaI, BglI, BglII, EcoRI, XbaI, HincII, HindIII, and HpaI. Restriction enzymes PstI, SmaI, KpnI, XhoI, SalI, and PvuI do not cleave within the Tn10 element. This map confirms the previously reported structure of this transposon; it is composed of a unique sequence (approximately6,400 base pairs long), which in part codes for the tetracycline resistance functions and is bounded by inverted repeats (approximately 1,450 base pairs long).  相似文献   

10.
A physical map of the genome of temperate phage phi 3T.   总被引:7,自引:0,他引:7  
J M Cregg  J Ito 《Gene》1979,6(3):199-219
A physical map of the genome of Bacillus subtilis bacteriophage phi 3T was constructed by ordering the fragments produced by cleavage of phi 3T DNA with restriction endonucleases AvaII (2 fragments), BglI (2 fragments), SmaI (3 fragments), BamHI (6 fragments), SalI (7 fragments), AvaI (7 fragments), SacI (12 fragments), PstI (14 fragments), and BglII (26 fragments). Two techniques were used to order the fragments: (1) Sets of previously ordered restriction fragments were isolated and redigested with the endonuclease whose cleavage sites were to be mapped. (2) Fragments located near the ends of the genome or near the ends of other restriction fragments were ordered by treating the DNA with lambda exonuclease prior to restriction endonuclease cleavage. The susceptibility of phi 3T DNA to 15 other restriction endonucleases is also reported.  相似文献   

11.
12.
When R64 DNA was digested with EcoRI, two DNA fragments not equimolar to the plasmid DNA were produced. A DNA region including these fragments was cloned (pKK009), and the pKK009 DNA sample was found to be a mixture of six or more DNA species with EcoRI, PstI, and AvaI cleavage sites at different positions, suggesting a complex rearrangement of DNA. When a part of the pKK009 DNA was removed by HindIII digestion, 33 different types of plasmids (pKK010-series plasmids) were obtained out of 58 clones tested, but no DNA rearrangement could be observed. On the basis of a comparison of the detailed restriction maps of these pKK010-series plasmids, we propose a model in which four DNA segments invert independently or in groups within the 1.95-kilobase region of R64, so that the arrangements of these four segments change randomly. The fixed pKK010-series plasmid DNA was again rearranged in the presence of R64, indicating that trans-acting gene function may be present to mediate the DNA rearrangement. The gene (tentatively designated as rci) was located on a 4.5-kilobase E9' fragment of R64.  相似文献   

13.
The DNA of bacteriophage T3 was characterized by cleavage with seven restriction endonucleases. AvaI, XbaI, BglII, and HindIII each cut T3 DNA at 1 site, KpnI cleaved it at 2 sites, MboI cleaved it at 9 sites, and HpaI cleaved it at 17 sites. The sizes of the fragments produced by digestion with these enzymes were determined by using restriction fragments of T7 DNA as molecular weight standards. As a result of this analysis, the size of T3 DNA was estimated to be 38.74 kilobases. The fragments were ordered with respect to each other and to the genetic map to produce a restriction map of T3 DNA. The location and occurrence of the restriction sites in T3 DNA are compared with those in the DNA of the closely related bacteriophage T7.  相似文献   

14.
Cloning multiple copies of a DNA segment   总被引:17,自引:0,他引:17  
J L Hartley  T J Gregori 《Gene》1981,13(4):347-353
A method for self-ligation of DNA segments, which is based on the rotational non-equivalence of ends produced by AvaI cleavage, has been developed. Using this method and an initiator molecule to encourage the formation of long polymers, we have obtained a plasmid containing 34 repeats of a 123-bp rat DNA segment. All of the repeats are in the same orientation, and the plasmid is quite stable. It should be possible to polymerize any DNA segment by this method. Potential uses of the procedure include production of large amounts of small, homogeneous DNAs for physical studies such as X-ray crystallography, and increasing the expression of cloned genes in bacteria.  相似文献   

15.
A sequence-specific modification methylase (M.AquI) was isolated and purified from Agmenellum quadruplicatum (Synechococcus PCC 7002). This enzyme uniquely methylates the deoxycytidylate residue in the sequence *CYCGRG indicated by the asterisk. It was shown to protect DNA against cleavage by restriction endonucleases AvaI, SmaI and XhoI, which recognize the sequences CYCGRG, CCCGGG, and CTCGAG, respectively.  相似文献   

16.
17.
Bacterial type I restriction/modification systems are capable of performing multiple actions in response to the methylation pattern on their DNA recognition sequences. The enzymes making up these systems serve to protect the bacterial cells against viral infection by binding to their recognition sequences on the invading DNA and degrading it after extensive ATP-driven translocation. DNA cleavage has been thought to occur as the result of a collision between two translocating enzyme complexes. Using atomic force microscopy (AFM), we show here that EcoKI dimerizes rapidly when bound to a plasmid containing two recognition sites for the enzyme. Dimerization proceeds in the absence of ATP and is also seen with an EcoKI mutant (K477R) that is unable to translocate DNA. Only monomers are seen when the enzyme complex binds to a plasmid containing a single recognition site. Based on our results, we propose that the binding of EcoKI to specific DNA target sequences is accompanied by a conformational change that leads rapidly to dimerization. This event is followed by ATP-dependent translocation and cleavage of the DNA.  相似文献   

18.
Cleavage of phosphorothioate-substituted DNA by restriction endonucleases   总被引:7,自引:0,他引:7  
M13 RF DNA was synthesized in vitro in the presence of various single deoxynucleoside 5'-O-(1-thiotriphosphate) phosphorothioate analogues, and the three other appropriate deoxynucleoside triphosphates using a M13 (+)-single-stranded template, Escherichia coli DNA polymerase I and T4 DNA ligase. The resulting DNAs contained various restriction endonuclease recognition sequences which had been modified at their cleavage points in the (-)-strand by phosphorothioate substitution. The behavior of the restriction enzymes AvaI, BamHI, EcoRI, HindIII, and SalI towards these substituted DNAs was investigated. EcoRI, BamHI, and HindIII were found to cleave appropriate phosphorothioate-substituted DNA at a reduced rate compared to normal M13 RF DNA, and by a two-step process in which all of the DNA is converted to an isolable intermediate nicked molecule containing a specific discontinuity at the respective recognition site presumably in the (+)-strand. By contrast, SalI cleaved substituted DNA effectively without the intermediacy of a nicked form. AvaI, however, is only capable of cleaving the unsubstituted (+)-strand in appropriately modified DNA.  相似文献   

19.
Histone DNA sequences, were detected in Eco RI fragments of total Xenopus laevis DNA, by hybridization with 32P-labeled h22-DNA, a histone gene repeat unit of the sea urchin Psammechinus miliaris. The about 6 kb-size class, which was found to hybridize, was subsequently integrated into the E. coli plasmid pCR1. A clone was isolated that contains a 5.8 kb EcoRI fragment hybridizing with h22-DNA. A physical map was constructed using the restriction endonucleases BamHI, PstI, HincII, BglII, XbaI, PvuII, XhoI, AvaI, SmaI, HinfI and HpaII. The fragment was not cleaved by KpnI, AvaI, SalI and HindIII. Using this restriction map we were able to determine the gene order by hybridization with purified gene probes derived from h22-DNA. The gene order was found to be H3, H4, H2A and H2B. The localization of the H1 gene was not possible, probably due to its greater evolutionary divergence. Part of the sequence of the H3-gene is presented providing unambiguous evidence on the identity, map position and polarity of this gene.  相似文献   

20.
We have constructed a hybrid plasmid by insertion of the thymidine kinase (TK) gene of Herpes simplex virus (HSV) type I at the BamHI site on Escherichia coli plasmid pBR322. The restriction endonuclease cleavage site map for the viral DNA fragment was determined for ten nucleases, and the insert in the recombinant plasmid has the same restriction nuclease digestion pattern as bona fide viral DNA. This result indicates that the plasmid contains an accurate copy of the viral DNA. The viral TK gene carried on the plasmid can be introduced into mammalian cells where it is expressed. This source of DNA with a selectable marker should be of considerable practical use in gene-transfer experiments in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号