首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L J Menz 《Cryobiology》1975,12(4):405-416
Desheathed rat cutaneous nerves were exposed to various concentrations of ethylene glycol (EG), glycerol and dimethyl sulfoxide (DMSO) at temperatures of 1, 24, and 38 °C for periods of time ranging from 5 to 60 min. Measurements of the percent recovery of the original action potential (AP) were determined after removal of the cryoprotective agent (CPA) under various conditions, i.e., temperature, time and sequence of rinsing. A comparison of the results obtained after the nerves were exposed directly to a 15% concentration of the three CPAs at 1 °C for a 15-min period showed that the percentage of recovery of the AP was 90, 69, and 36% of the original values when treated with DMSO, EG, or glycerol, respectively. In all three groups, the nerves were rinsed at 1 °C for 15 min. If the exposure to glycerol at 1 °C was carried out in a gradual stepwise manner, the recovery of the AP in 10 and 15% solutions ranged from 58 to 64%. If the temperatures of the exposure and rinse were increased to 24 and 38 °C, glycerol produced some toxicity within 10 min and after 25 min no recovery of AP was obtained. The results of a 10-min direct exposure to EG at 1 °C showed a moderate decrease in recovery of the AP as the concentration was increased from 10 to 15–20%. Increasing the exposure time to 15 and 30 min at 1 °C also contributed to further reduction in recovery. DMSO, however, in concentrations of 10, 15, and 20% produced only a slight decline of AP after a 5–15 min exposure at 1 °C. Recovery ranged from 96% after 10 min in a 10% solution to 88% after 15 min in a 20% solution. Toxicity became more apparent with DMSO when nerves were exposed to 30% concentrations for 5–10 min; the latter time resulted in a 49% recovery of the AP. Exposure of nerves to a CPA solution containing isotonic concentrations of electrolytes resulted in a 10–30% improvement in recovery when compared with specimens treated with lower levels of salt. The effect of raising the temperature of the rinse to 38 °C and increasing the wash time to 20 min was studied in a few selected experiments. After a direct 15-min exposure to a 15% solution of a CPA at 1 °C the recovery in the case of glycerol was significantly increased with such treatment whereas with EG and DMSO it remained unchanged. There was no evidence of thermal or cold shock in this work.  相似文献   

2.
Reversible structure modification of frog sciatic nerve myelin bathed in Ringer's solution containing dimethyl sulfoxide (DMSO) at a concentration of 33% has been studied by low-angle X-ray diffraction using a linear position-sensitive counter. Fourier images of native myelin layers, derived using low-order reflections measured at various stages of the DMSO treatment, reveal that the bilayer profile of native myelin membrane undergoes a specific asymmetric change prior to the phase transformation: The high-density peak on the extracellular side of the central lipid hydrocarbon layer decreases reversibly as the nerve is permeated by DMSO, while the internal peak and the central layer remain virtually unaltered. The dynamic process by which the contracted phase of myelin is derived from native myelin is speculated on the basis of the observed profile change.  相似文献   

3.
Summary Cryopreservation of African violet via encapsulation-dehydration, vitrification, and encapsulation-vitrification of shoot tips was evaluated. Encapsulation-dehydration, pretreatment of shoot tips with 0.3 M sucrose for 2 d followed by air dehydration for 2 and 4 h resulted in complete survival and 75% regrowth, respectively. Dehydration of encapsulated shoot tips with silica gel for 1 h resulted in 80% survival but only 30% regrowth. Higher viability of shoot tips was obtained when using a step-wise dehydration of the material rather than direct exposure to 100% plant vitrification solution (PVS2). Complete survival and 90% regrowth were achieved with a four-step dehydration with PVS2 at 25°C for 20 min prior to freezing. The use of 2M glycerol plus 0.4M sucrose or 10% dimethyl sulfoxide (DMSO) plus 0.5M sucrose as a cryoprotectant resulted in 55% survival of shoots. The greatest survival (80–100%) and regrowth (80%) was obtained when shoot tips were cryoprotected with 10% DMSO plus 0.5M sucrose or 5% DMSO plus 0.75M sucrose followed by dehydration with 100% PVS2. Shoot tips cryoprotected with 2M glycerol plus 0.4M sucrose for 20 min exhibited complete survival (100%) and the highest regrowth (55%). In encapsulation-vitrification, dehydration of encapsulated and cryoprotected shoot tips with 100% PVS2 at 25°C for 5 min resulted in 85% survival and 80% regrowth.  相似文献   

4.
Eight-cell mouse embryos were frozen in 0.5-ml plastic straws in modified Dulbecco's phosphate buffered saline (PBS) plus 5% steer serum plus either 1.32 M dimethyl sulfoxide (DMSO) or 1.32 M glycerol. Upon thawing, embryos were diluted 1:4 with 0.0, 0.2, 0.6, or 1.0 M sucrose solutions within the straws. Thawing was either in air at ambient temperature or in 8 degrees C or 38 degrees C water. After 48 h of culture, more embryos frozen in DMSO and thawed in 8 degrees C and 37 degrees C water developed to blastocysts (87 and 93%, respectively) than embryos thawed in air (75%; P < 0.05). No significant differences in development were noted among the three thawing regimens when embryos were frozen with glycerol. There was no significant effect of concentration of sucrose during dilution on development of embryos postthaw. With glycerol as the cryoprotectant, damage to zonae pellucidae increased as thawing rates increased, whereas the opposite was observed with DMSO as the cryoprotectant (P < 0.05).  相似文献   

5.
Kleinhans FW  Mazur P 《Cryobiology》2007,54(2):212-222
Phase diagrams are of great utility in cryobiology, especially, those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPAs. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA+salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt% concentrations exceeded 30% for DMSO and 55% for glycerol, and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue.  相似文献   

6.
D B Pribor 《Cryobiology》1975,12(4):309-320
Human erythrocytes washed with phosphate buffered saline (PBS) were frozen for 1 or 16 min at temperatures ranging from ?10 to ?80 °C. Red cell suspensions contained either no protective agent or various concentrations of dimethylsulfoxide (DMSO) or glycerol. The similarities between cryoprotection by DMSO and glycerol reinforce Rapatz and Luyet's classification of cryoprotective agents into three types and support Mazur's two-factor theory of cryoprotection. However, there are important differences between the cryoprotective effects of DMSO and glycerol. The most noteworthy is that for all concentrations of DMSO a 16-min freezing exposure was equal to or more damaging than a 1-min exposure; the converse was true for 11.8 and 17.7% glycerol solutions. This and other differences suggest that the general mechanism of freeze-thaw damage and cryoprotection is more complex than described by Mazur's two-factor theory. Likewise cryoprotective agents cannot be consistently classified into two or three types. A multifactor theory was suggested as a more extensive model for understanding freeze-thaw damage and cryoprotection. The major new contribution of this theory is the idea of biological interaction. This latter refers to solutes in conjunction with various factors which disturb the steady state of the cell membrane. The change in the membrane may be reversible or irreversible depending upon the circumstances.  相似文献   

7.
We compare different vitrification protocols on the pregnancy and lambing rate of in vitro produced (IVP) and in vivo derived (IVD) ovine embryos. Ovine blastocysts were produced by in vitro maturation, fertilization and culture of oocytes collected from slaughtered ewes or superovulated and inseminated animals. Embryos were cryopreserved after exposure at room temperature either for 5 min in 10% glycerol (G), then for 5 min in 10% G + 20% ethylene glycol (EG), then for 30 s in 25% G + 25% EG (glycerol group), or for 3 min in 10% EG + 10% dimethyl sulphoxide (DMSO), then for 30s in 20% EG + 20% DMSO + 0.3 M sucrose (DMSO group). One group of in vitro produced embryos was cryopreserved similarly to the DMSO group, but with 0.75 M sucrose added to the vitrification solution (DMSO 0.75 group). Glycerol group embryos were then loaded into French straws or open pulled Straws (OPS) while the DMSO group embryos were all loaded into OPS and directly plunged into liquid nitrogen. Embryos were warmed with either a one step or three step process. In the one step process, embryos were placed in 0.5 M sucrose. The three-step process was a serial dilution in 0.5, 0.25 and 0.125 M sucrose. The embryos of DMSO 0.75 group were warmed directly by plunging them into tissue culture medium-199 (TCM-199) + 20% foetal bovine serum (FBS) in the absence of sucrose (direct dilution). Following these manipulations, the embryos were transferred in pairs into synchronised recipient ewes and allowed to go to term. The pregnancy and the lambing rate within each group of IVP and IVD embryos indicated that there was no statistical difference among the vitrification protocols.  相似文献   

8.
The effect of three water-soluble fusogens: dimethyl sulfoxide (DMSO), glycerol and sucrose on the structural properties of model lipid membranes has been studied by electron spin resonance (ESR) using 5-doxylstearic acid as a spin probe and by fluorescence spectroscopy using pyrene as an excimer forming fluorescent probe. All three fusogens tested produce a marked increase in the order parameter of the region close to the polar surface of the lipid bilayer. The ordering effect of DMSO, but not of glycerol and sucrose, is much stronger with respect to membranes prepared from acidic than from neutral phospholipids. The membrane-perturbing action of glycerol and sucrose manifests itself also in the reduced lateral mobility of membrane incorporated pyrene, indicating thus a decreased fluidity of the bilayer hydrophobic region. The structural perturbations produced in model membranes by DMSO, glycerol and sucrose are discussed in relation to the mechanism by which these substances promote cell fusion.  相似文献   

9.
Cryopreservation of wheat (Triticum aestivum L.) egg cells by vitrification   总被引:1,自引:0,他引:1  
A procedure has been developed for the cryopreservation of wheat female gametes. The procedure involves loading the cells with 25% concentrated vitrification solution consisting of 30% glycerol, 10% sucrose, 120 mM ascorbic acid (AA) and 5% propylene glycol (PG), dehydration in 80% concentrated vitrification solution, droplet vitrification and storage in liquid nitrogen, unloading and rehydration of the cells by gradual addition of isolation solution. Supplementation with AA significantly increased the proportion of viable egg cells after de- and rehydration. During the early phase of rehydration AA reduced the probability of membrane damage caused by rapid water uptake. Maintaining the temperature of the cells at 0°C during the de- and rehydration processes increased cell survival. Microscopic examination of the semi-thin sections of untreated and viable cryopreserved cells revealed that the vitrification process might cause changes in cell structure.  相似文献   

10.
Plant genebanks often use cryopreservation to securely conserve clonally propagated collections. Shoot tip cryopreservation procedures may employ vitrification techniques whereby highly concentrated solutions remove cellular water and prevent ice crystallization, ensuring survival after liquid nitrogen exposure. Vitrification solutions can be comprised of a combination of components that are either membrane permeable or membrane impermeable within the timeframe and conditions of cryoprotectant exposure. In this study, the osmotic responses of sweet potato [Ipomoea batatas (L.) Lam.] suspension cell cultures were observed after treatment with plant vitrification solution 2 [PVS2; 15% (v/v) dimethyl sulfoxide (DMSO), 15% (v/v) ethylene glycol, 30% (v/v) glycerol, 0.4 M sucrose], plant vitrification solution 3 (PVS3; 50% (v/v) glycerol, 50% (w/v) sucrose), and their components at 25 and 0°C, as well as cryoprotectant solution, PGD (10% (w/v) PEG 8000, 10% (w/v) glucose, 10% (v/v) DMSO) at 25°C. At either 25 or 0°C, sweet potato cells plasmolyzed after exposure to PVS2, PVS3, and PGD solutions as well as the PVS2 and PVS3 solution components. Cells deplasmolyzed when the plasma membrane was permeable to the solutes and when water re-entered to maintain the chemical potential. Sweet potato suspension cells deplasmolyzed in the presence of 15% (v/v) DMSO or 15% (v/v) ethylene glycol. Sweet potato plasma membranes were more permeable to DMSO and ethylene glycol at 25°C than at 0°C. Neither sucrose nor glycerol solutions showed evidence of deplasmolysis after 3 h, suggesting low to no membrane permeability of these components in the timeframes studied. Thus, vitrification solution PVS2 includes components that are more membrane permeable than PVS3, suggesting that the two vitrification solutions may have different cryoprotectant functions. PGD includes DMSO, a permeable component, and likely has a different mode of action due to its use in two-step cooling procedures.  相似文献   

11.
The present study evaluates the effect of six loading solutions and five vitrification solutions (VS) and their time of exposure on the survival of oil palm (Elaeis guineensis) polyembryoids in liquid nitrogen (LN). In vitro grown polyembryoids of oil palm were successfully cryopreserved by vitrification with 45% survival. Individual polyembryoids, isolated from 2-month old culture, were precultured in liquid Murashige and Skoog medium supplemented with 0.5 M sucrose for 12 h and treated with a mixture of 10% (w/v) dimethyl sulphoxide (DMSO) plus 0.7 M sucrose for 30 min. Polyembryoids were then subjected to plant vitrification solution-2 (PVS2) (30% (w/v) glycerol plus 15% (w/v) EG plus 15% (w/v) DMSO plus 0.4 M sucrose) exposure for 5 min at 26 ± 2°C and subsequently plunged into LN. Thawed polyembryoids resumed growth within 8 days of culture and shoot development was recorded at 25 days of growth. Scanning electron micrograph revealed that successful regeneration of cryopreserved polyembryoids was due to stabilization of cellular integrity through optimum VS exposure.  相似文献   

12.
The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions.  相似文献   

13.
The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions.  相似文献   

14.
The nucellar cells of navel orange(Citrus sinensis Osb. var. brasiliensis Tanaka) were successfully cryopreserved by vitrification. In this method, cells were sufficiently dehydrated with highly concentrated cryoprotective solution(PVS2) prior to direct plunge in liquid nitrogen. The PVS2 contains(w/v) 30% glycerol, 15% ethylene glycol and 15% DMSO in Murashige-Tucker medium(MT) containing 0.15 M sucrose. Cells were treated with 60% PVS2 at 25°C for 5 min and then chilled PVS2 at 0°C for 3 min. The cell suspension of about 0.1 ml was loaded in a 0.5 ml transparent plastic straw and directly plunged in liquid nitrogen for 30 min. After rapid warming, the cell suspension was expelled in 2 ml of MT medium containing 1.2 M sucrose. The average rate of survival was about 80%. The vitrified cells regenerated plantlets. This method is very simple and the time required for cryopreservation is only about 10 min.Abbreviations DMSO dimethyl sulfoxide - PVS2 vitrification solution - LN liquid nitrogen - DSC differential scanning calorimeter - BA 6-benzylaminopurine - MT Murashige-Tucker basal medium - INAA naphthaleneacetic acid  相似文献   

15.
Summary The objective of this study was to establish a cryopreservation protocol for sour orange (Citrus aurantium L.). Cryopreservation was carried out via encapsulation-dehydration, vitrification, and encapsulation-vitrification on shoot tips excised from in vitro cultures. Results indicated that a maximum of 83% survival and 47% regrowth of encapsulated-dehydrated and cryopreserved shoot tips was obtained with 0.5M sucrose in the preculture medium and further dehydration for 6 h to attain 18% moisture content. Dehydration of encapsulated shoot tips with silica gel for 2h resulted in 93% survival but only 37% regrowth of cryopreserved shoot tips. After preculturing with 0.5M sucrose, 80% of the vitrified cryopreserved shoots survived when 2M sucrose plus 10% dimethyl sulfoxide (DMSO) was used as a cryoprotectant for 20 min at 25°C. Survival and regrowth of vitrified cryopreserved shoot tips were 67% and 43%, respectively, when 0.4M sucrose plus 2M glycerol was used as a loading solution followed by application of 100% plant vitrification solution (PVS2) for 20 min. Increased duration of exposure to the loading solution up to 60 min increased survival (83%) and regrowth (47%) of cryopreserved shoot tips. With encapsulation-vitrification, dehydration with 100% PVS2 for 2 or 3 h at 0°C resulted in 50 or 57% survival and 30 or 40% regrowth, respectively, of cryopreserved shoot tips.  相似文献   

16.
The relative contributions of membrane rupture due to osmotic stress and of chemical membrane damage due to the accumulation of cryotoxic solutes to cryoinjury was investigated using thylakoid membranes as a model system. When thylakoid suspensions were subjected to a freeze-thaw cycle in the presence of different molar ratios of NaCl as the cryotoxic solute and sucrose as the cryoprotective solute, membrane survival first increased linearly with the osmolality of the solutions used to suspend the membranes, regardless of the molar ratio of salt to sucrose. It subsequently decreased when the ratio of sucrose to salt was not sufficiently high for complete cryopreservation by sucrose. There was an optimum of cryopreservation at intermediate osmolalities (approx. 0.1 osmol/kg). This optimum of cryopreservation at a given sucrose concentration could be shifted to lower solute concentration, if mixtures of NaCl and NaBr were used instead of NaCl alone. At suboptimal initial osmolalities, damage is attributed mainly to membrane rupture. Under these conditions, cryopreservation is not influenced by the chaotropicity of the suspending medium. At supraoptimal initial solute concentrations, solute (i.e., chemical) effects determine membrane survival. Under these conditions, increased ratios of sugar to salt increased cryoprotection. In mixtures of NaCl and NaBr at constant molar ratios of salt to sucrose, chemical membrane damage was quantitatively related to the lyotropic properties of the ions used. The degree of chemical damage becomes more pronounced with rising osmolalities of the suspending media. With NaF as the cryotoxic solute, damage was more severe than should be expected from its lyotropic properties. This may reflect a specific interaction of fluoride with the membranes. Protein release from the membranes during freezing in the presence of different anions was qualitatively comparable at identical ratios of sugar to salt. However, the total amount of protein released was correlated linearly with membrane inactivation, even when different anions acted on the membranes. Gel electrophoretic analysis of proteins released from thylakoid membranes during freezing revealed discrete bands indicative of mechanical and chemical damage, respectively.  相似文献   

17.
Chinese hamster ovary (CHO) cells exposed for up to 2 hr to hypertonic Eagle's MEM were examined for surface changes by scanning electron microscopy. Cells hypertonically stressed in the presence of DMSO were identically monitored. In media supplemented with NaCl, little changes were observed below 2600 mosm. Above this level there is a concentration-and time-dependent disappearance of surface microvilli and blebs as well as a reduction in the plasma membrane ruffling activity. At hyperosmolalities of about 3000 mosM the cells became devoid of any surface projections and demonstrated multiple blister-like patches. In 20 × isotonic solution, the cells are flattened, the usual surface projections are absent, and the membrane appears to be full of pits and holes, giving the cells the appearance of an overcooked fried egg. In hypertonic sucrose the surface of CHO cells developed a gradual thickening and agglutination of surface components at tonicities of about 5000 mosm.DMSO at 5 or 10% (w/v) concentration considerably mitigated the surface alterations of hypertonically NaCl stressed cells. Enzymatic digestions with pronase simulated some of the changes seen with hyperosmotic salt. Neuraminidase treatment produced no demonstrable change in surface topography.  相似文献   

18.
Apical meristems from adventitious buds induced by culturing of bulb-scale segments of Japanese Pink Lily (Lilium japonicum Thunb.) were successfully cryopreserved by a vitrification. The excised apical meristems were precultured on a solidified Murashige & Skoog medium, containing 0.3 M sucrose, for 1 day at 25°C and then loaded in a mixture of 2 M glycerol plus 0.4 M sucrose for 20 min at 25°C. Cryoprotected meristems were then sufficiently dehydrated with a highly concentrated vitrification solution (designated PVS2) at 25°C for 20 min or at 0°C for 110 min prior to a plunge into liquid nitrogen. After rapid warming in a water bath at 40°C, the meristems were placed in 1.8 ml of 1.2 M sucrose for 20 min and then, placed on filter papers over gellan gum-solidified MS medium. The revived meristems resumed growth within 5 days and directly produced shoots. The rate of shoot formation was approximately 80% after 4 weeks. When bulb-scale segments with adventitious buds were cold-hardened at 0°C for more than 7 days before the procedure, the rates of shoot formation were significantly increased. This vitrification method was successfully applied to five other lily cultivars. Thus, this vitrification procedure for cryopreservation appears promising as a routine method for cryopreserving meristems of lily.Abbreviations DMSO dimethylsulfoxide - EG ethylene glycol - LN liquid nitrogen - MS medium Murashige & Skoog (1962) medium - PVS2 vitrification solution  相似文献   

19.
The permeability of the plasma membrane plays a crucial role in the successful cryopreservation of oocytes/embryos. To identify a stage feasible for the cryopreservation of teleost oocytes, we investigated the permeability to water and various cryoprotectants of medaka (Oryzias latipes) oocytes at the germinal vesicle (GV) and metaphase II (MII) stages. In sucrose solutions, the volume changes were greater in GV oocytes than MII oocytes. Estimated values for osmotically inactive volume were 0.41 for GV oocytes and 0.74 for MII oocytes. Water-permeability (microm/min/atm) at 25 degrees C was higher in GV oocytes (0.13+/-0.01) than MII oocytes (0.06+/-0.01). The permeability of MII oocytes to various cryoprotectants (glycerol, propylene glycol, ethylene glycol, and DMSO) was quite low because the oocytes remained shrunken during 2 h of exposure in the cryoprotectant solutions at 25 degrees C. When the chorion of MII oocytes was removed, the volume change was not affected, except in DMSO solution, where dechorionated oocytes shrunk and then regained their volume slowly; the P(DMSO) value was estimated to be 0.14+/-0.01x10(-3) cm/min. On the other hand, the permeability of GV oocytes to cryoprotectants were markedly high, the P(s) values (x10(-3) cm/min) for propylene glycol, ethylene glycol, and DMSO being 2.21+/-0.29, 1.36+/-0.18, and 1.19+/-0.01, respectively. However, the permeability to glycerol was too low to be estimated, because GV oocytes remained shrunken after 2 h of exposure in glycerol solution. These results suggest that, during maturation, medaka oocytes become less permeable to water and to small neutral solutes, probably by acquiring resistance to hypotonic conditions before being spawned in fresh water. Since such changes would make it difficult to cryopreserve mature oocytes, immature oocytes would be more suitable for the cryopreservation of teleosts.  相似文献   

20.
This study examined the effect of cryoprotectants (20% DMSO, a 10% DMSO/10% glycerol mixture, 20% glycerol and 1 M sucrose solution) on kangaroo sperm structure and function, along with the effect of varying concentrations of glycerol on sperm mitochondrial function. Eastern grey kangaroo cauda epididymidal spermatozoa were incubated for 10 min at 35 °C in each cryoprotectant and the plasma membrane integrity (PMI) and motility assessed using light microscopy. The same samples were fixed for TEM and the ultrastructural integrity of the spermatozoa examined. To investigate the effect of glycerol on the kangaroo sperm mitochondrial function, epididymidal spermatozoa were incubated with JC-1 in Tris–citrate media at 35 °C for 20 min in a range of glycerol concentrations (0%, 5%, 10%, 15% and 20%) and the mitochondrial membrane potential (MMP) and plasma membrane integrity determined. As expected, incubation of spermatozoa in 20% glycerol for 10 min resulted in a significant reduction in motility, PMI and ultrastructural integrity. Interestingly, incubation in 20% DMSO resulted in no significant reduction in motility or PMI but a significant loss of structural integrity when compared to the control spermatozoa (0% cryoprotectant). However, 20% DMSO was overall less damaging to sperm ultrastructure than glycerol, a combination of 10% glycerol and 10% DMSO, and sucrose. While all glycerol concentrations had an adverse effect on mitochondrial function, the statistical models presented for the relationship between MMP and glycerol predicted that spermatozoa, when added to 20% glycerol, would lose half of their initial MMP immediately at 35 °C and MMP would halve after 19.4 min at 4 °C. Models for the relationship between PMI and glycerol predicted that spermatozoa would lose half of their initial PMI after 1.8 min at 35 °C and PMI would halve after 21.1 min at 4 °C. These results suggest that if glycerol is to be used as a cryoprotectant for kangaroo spermatozoa then it is best administered at 4 °C and that mitochondrial function is more sensitive to glycerol than PMI. Future research should be directed at investigating strategies that reduce exposure of spermatozoa to glycerol during processing and that test the cryoprotective properties of 20% DMSO for kangaroo spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号