首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Nucellar cell suspension protoplasts of navel orange (Citrus sinsensis Osb.) were chemically fused with mesophyll protoplasts of Troyer citrange (C. sinensis x Poncirus trifoliata) and cultured in hormone-free Murashige and Tucker medium containing 0.6 M sucrose. Two types of plant were regenerated through embryogenesis. One type showed intermediate mono-and difoliate leaves and the other types was identical to Troyer citrange. The regenerated plants with intermediate morphology were demonstrated by chromosome counts and rDNA analysis to be amphidiploid somatic hybrids. Five clones of these somatic hybrids were grafted in the field. After 4 years, they set flowers having a morphology intermediate between those of the two parents. The pollen grains showed high stainability and sufficient germinability, and were larger than those of Troyer citrange. The fruits of the somatic hybrids were large and spherical with thick rinds. Most of them contained seeds with normal germinability. These results indicate that somatic hybridization is a useful tool for Citrus breeding.  相似文献   

2.
The influence of light, hormones and explant orientation onin vitro regeneration in epicotyl cuttings was compared in fourCitrus species (C. aurantium, C. macrophylla, C. reshni andC.sinensis ) and the hybrid Troyer citrange (C. sinensis x Poncirustrifoliata). In all cases, explants planted vertically regeneratedshoots at the apical end by a process of direct organogenesiswithout callus formation. When the Troyer citrange explantswere incubated horizontally, regeneration at the apical endoccurred by an indirect organogenic pathway after callus formation.This change in the pathway of regeneration did not occur inany of the Citrus species, and incubation horizontally resultedin a reduction in the number of buds and shoots formed throughthe direct organogenic pathway. Shoot formation through thedirect organogenic pathway was inhibited by darkness, and thisinhibitory effect was counteracted by the cytokinin benzyladeninein Troyer citrange and, partly, in C. sinensis, but not in C.macrophylla. A non-organogenic callus formed at the basal endof most of the cuttings of C. reshni. InC. sinensis and C. aurantium,a non-organogenic callus formed only in a low proportion ofexplants. Troyer citrange formed an organogenic callus in whichbuds or roots differentiated depending on the auxin/cytokininbalance. C. macrophylla formed callus in the dark but not inthe light. Root formation occurred both in the presence of theauxin naphthaleneacetic acid or low concentrations (2.2 to 4.4µM) of the cytokinin benzyladenine, but no buds were formed.These qualitative and quantitative differences in the organogenicresponse indicate that the conditions for regeneration mustbe optimized for each genotype. Copyright 2000 Annals of BotanyCompany Benzyladenine, citrus, Citrus aurantium, Citrus macrophylla, Citrus sinensis, Citrus sinensis x Poncirus trifoliata, naphthaleneacetic acid, organogenesis, rooting, shoot regeneration, Troyer citrange  相似文献   

3.
Abstract While citrus rootstocks differ in capacity for sodium and chloride ion exclusion, citrus scion species also vary in foliar sensitivity to NaCl salinisation. Of two common scions, ‘Lisbon’ lemon appears more sensitive, whereas ‘Valencia’ orange in less sensitive to leaf salt. In an attempt to explain this difference. ‘Valencia’ orange (Citrus sinensis [L.] Osbeck) and ‘Prior Lisbon’ lemon (Citrus limon [L.] Burm. F.) were budded to rootstocks known to differ in their ability to exclude sodium ions viz, the strong excluder Trifoliata (Poncirus trifoliata [L.] Raf.), and the weaker excluder Troyer citrange (C. sinensis×P. trifoliata); neither rootstock shows strong exclusion of chloride ions. Budded trees were held under a photosynthetic photon flux density of 450 μmol m 2 S 1 and watered with nutrient solution containing either 0 or 50 mol m 3 NaCl. Growth and photosynthetic responses were measured over 58 d following onset of salinization: salinity effects on leaf gas exchange were studied in relation to changes in leaf water status, compatible solutes and foliar content of sodium and chloride ions, over that same period. Once root-zone salinization began to influence leaf solutes (day 30 onwards), lemon showed a steeper increase in leaf chloride than occurred for orange. Although rootstock differences were without effect on this ingress of chloride ions for either scion, sodium ions were excluded from both scions to a larger extent by Trifoliata than by Troyer citrange. Carbon dioxide assimilation of scion foliage was reduced earlier and to a much larger extent by rootzone salinization in lemon than in orange. Furthermore, comparisons of CO2 assimilation in relation to leaf tissue solutes between scions (on either rootstock) showed stronger responses for both sodium and chloride ions in lemon than in orange. Faster ingress of chloride into lemon leaves was identified as the crucial factor which predisposed towards expression of that contrast between scions. Although contrasts between scions in photosynthetic responses to salinization matched a faster ingress of chloride into lemon than into orange leaves, the sharper photosynthetic response of ‘Prior Lisbon’ lemon to salinity was not solely attributable to higher concentrations of chloride ions (cell sap basis). A difference between species in subcellular compartmentation of the chloride ion under saline conditions was invoked.  相似文献   

4.
Procedures for high efficiency production of transgenic citrus plants using an Agrobacterium tumefaciens system with plasmolysis treatment were developed. Longitudinally cut epicotyl segments of eight different citrus species [’Milam’ Rough lemon (Citrus jambhiri Lush), ‘Volkamer’ lemon (Citrus volkameriana L), Rangpur lime (Citrus limonia L), ‘Hamlin’ sweet orange (Citrus sinensis L Osbeck), ‘Duncan’ grapefruit (’Citrus paradisi’ Macf), Sour orange (Citrus aurantium L), ‘Cleopatra’ mandarin (Citrus reticulata Blanco) and Carrizo citrange (Citrus sinensis L Osbeck x Poncirus trifoliata L Raf) ] were plasmolyzed in different concentrations of sucrose and maltose [0, 3, 6, 8, 9, 10, 12 % (w/v) ] prior to Agrobacterium inoculation. Plasmolyzed epicotyl explants were cocultivated with either the hypervirulent Agrobacterium tumefaciens strain, the EHA-101 (harboring a binary vector pGA482GG) or Agl-1 (carrying pCAMBIA1303 vector). Both binary vectors contained neomycin phosphotransferase II (NPT II) and β-glucuronidase (GUS) genes. The binary vector, pCAMBIA1303 also contained a fused mGFP5 gene at the 3’ end of GUS gene as a reporter. Epicotyl explants of Rangpur lime, Rough and ‘Volkamer’ lemons plasmolyzed in 9–12 % maltose showed transient GUS gene expression comprising up to 95 % of the cut surface of explants, while Carrizo citrange showed 80 % expression when they were plasmolyzed in 6–10 % sucrose. On the other hand, epicotyl explants of ‘Hamlin’ sweet orange, Grapefruit, Sour orange and ‘Cleopatra’ mandarin showed transient GUS expession in 80–90 % of explants with 6–10 % sucrose. Basal portions of the regenerated putative transgenic shoots harvested from the cut surface of epicotyl explants within 2–3 months, were assayed for GUS, and apical portions were shoot-tip grafted in vivo for the production of whole plants. The transformation efficiencies in different species obtained are the highest so far reported for citrus.  相似文献   

5.
The infectivity of five populations of Tylenchulus semipenetrans were compared and differentiated on 10 hosts (5 Citrus spp., 1 Poncirus trifoliata, and 4 hybrids of Citrus spp. X P. trifoliata). Differences in levels of infection and development (P = 0.01) occurred between Citrus spp. and P. trifoliata cv. ''Pomeroy'' and their three hybrids, C. paradisi X P. trifoliata cv. ''Swingle'' citruntelo and C. sinensis, cv. ''Ruby'' orange X P. trifoliata cv. ''Webber Fawcett 14-7'', and ''15-7''. Poncirus trifoliata cv. Pomeroy was susceptible to a California biotype 3 and highly resistant to the other citrus nematode populations. Low infection levels with California biotype 1, Arizona, and Florida populations on Swingle citrumelo, and the two Ruby orange hybrids indicated inherited resistance. Reproduction of the nematode population from Texas was greatest on the three hybrids, Swingle citrumelo, Ruby orange 14-7, and 15-7, from the California 1, Arizona, and Florida populations, but its comparable densities on P. trifoliata and Citrus spp. were not sufficiently different from these populations to consider it a separate biotype. California biotype 3 was sufficiently different from all other populations to be considered a different biotype, and it was named the "Poncirus biotype."  相似文献   

6.
Six-months-old, uniform sized seedlings of two citrus rootstocks; Cleopatra mandarin (Citrus reshni Hort. ex Tan) and Troyer citrange (Poncirus trifoliata × Citrus sinensis) were irrigated with half-strength Hoagland nutrient solution containing 0, 40 or 80 mM NaCl for 12 weeks. Shoot height, leaf number and fresh weights of the seedlings, and relative chlorophyll contents, chlorophyll fluorescence yields (Fv/Fm), net photosynthetic and respiration rates in the leaves decreased with the increase in salinity level in the irrigation water. The decrease was greater in Troyer citrange as compared to Cleopatra mandarin. The concentrations of sugars i.e. fructose, glucose and sucrose in the leaves of Cleopatra mandarin and both leaves and roots of Troyer citrange decreased with the increase in salinity level. However, the concentrations in the roots of Cleopatra mandarin increased with the increase in salinity level. Free proline content in the leaves of Troyer citrange and root tissue of Cleopatra mandarin also increased with the increased salinity level. Among the polyamines, spermine titer increased in the leaves of both rootstocks as a response to salinity treatments. Na+ concentrations were higher in leaf and root tissue of Cleopatra mandarin, while that of Cl were higher in Troyer citrange.  相似文献   

7.
Bud differentiation by direct organogenesis at the apical endof Troyer citrange (Citrus sinensis[L]. OsbeckxPoncirus trifoliata[L].Raf.) epicotyl cuttings inserted vertically in a semi-solidculture medium did not require hormone additions. The numberof buds regenerated was slightly, but significantly, increasedwhen the incubation was performed in the light as compared tothe dark, and by the addition of benzyladenine (BA; 2.2 to 22µM) to the medium. Bud sprouting and subsequent shootformation required the addition of BA and was increased by lightto a higher extent than bud formation. The best response wasobtained with the highest BA concentration tested (22 µM).Regeneration through the indirect organogenic pathway at thetwo edges of the epicotyl cuttings when in contact with theculture medium did not occur in the absence of benzyladenine,which was an absolute requirement for callus development. Thebest regeneration response was obtained when the explants wereincubated in the light in the presence of 4.4 µM BA andan auxin. Indole-3-acetic acid (IAA; 5.8 µM) was moreeffective in increasing shoot formation than naphthaleneaceticacid (NAA; 0.54 µM). Higher NAA concentrations inhibitedshoot formation. Incubation in the dark or increasing the BAconcentration (22 µM) increased markedly callus growth,but inhibited both bud differentiation and sprouting, almostcompletely suppressing shoot formation. The conditions duringregeneration affected the rooting of the regenerated shoots.Rooting of 86% of the shoots was achieved in a medium with 2.7µM NAA and 2.6 µM indole-3-butyric acid. All therooted explants acclimated and survived transplanting. Underthe optimal conditions tested, the proliferation rate obtainedthrough the indirect regeneration pathway ranged from 60 to86 plants per seedling. Copyright 2000 Annals of Botany Company Troyer citrange, Citrus sinensisxPoncirus trifoliata, auxins, benzyladenine, direct organogenesis, hormone requirement, indirect organogenesis, light, morphogenesis, rooting.  相似文献   

8.
The water relations responses to salt of several important citrus rootstocks such as Swingle citrumelo, sour orange, and Milam lemon have not been studied in detail before. Studies were set up to compare growth and root hydraulic properties of these rootstocks to other citrus rootstocks by exposing them to NaCl and polyethylene glycol (PEG) stresses. Seedlings of 7 citrus rootstocks were irrigated for 5 months with nutrient solutions containing NaCl or PEG that had been adjusted to osmotic potentials of -0.10, -0.20 or -0.35 MPa. The 7 rootstocks studied were sour orange (Citrus aurantium), Cleopatra mandarin (Citrus reticulata Blanco), Swingle citrumelo (C. paradisi x P. trifoliata), Carrizo citrange (C. sinensis x P. trifoliata), rough lemon (Citrus jambhiri Lush), Milam lemon (C. jambhiri hybrid), and trifoliate orange (Poncirus trifoliata [L.] Raf.). In both shoot and root growth, Cleopatra mandarin and sour orange were the least sensitive to salt, Milam and trifoliate orange were the most sensitive, and rough lemon, Swingle, and Carrizo were intermediate in sensitivity. Even though the roots were exposed to solutions of equal osmotic potentials, plant growth and root conductivity were reduced more by the PEG treatments than the corresponding NaCl treatments. At -0.10 and -0.20 MPa, shoot and root dry weights were reduced 16 to 55% by NaCl and 24 to 68% by PEG. Shoot root ratio was lowered at the higher concentrations, particularly by PEG. There was a major decrease in root conductivity caused by NaCl at -0.10 MPa (19 to 30% in sour orange and Cleopatra mandarin and 78 to 85% in trifoliate orange and Milam). Conductivity decreased more at -0.20 and -0.35 MPa, but not proportionally as much as at -0.10 MPa. Root weight per unit length increased at the higher salt levels, particularly in trifoliate orange. Water flow rate through root systems followed the same trend as root conductivity; salt affected sour orange and Cleopatra mandarin the least and trifoliate orange and Milam the most. However, reductions in fibrous root length by salt treatment differed. Root lengths of Swingle and Carrizo were least affected by salt while sour orange. Milam, and rough lemon were the most affected. Hence, even though sour orange and Cleopatra mandarin were more tolerant than the other rootstocks in terms of water flow rate or root conductivity, these 2 rootstocks showed a proportionally greater decrease in root length than Carrizo, Swingle, or trifoliate orange.  相似文献   

9.
Seedlings of the hybrid citrus rootstock, Carrizo citrange (Citrus sinensis × Poncirus trifoliata) do not uniformly limit development of the citrus burrowing nematode, Radopholus citrophilus. Variation in nematode population densities in roots of seedlings germinating from the same seed suggests that factors responsible for nematode incompatibility are not functional or are not inherited uniformly among progeny. Seeds which produced a single seedling were more likely to produce plants which suppressed citrus burrowing nematode population increase than were seeds which produced two or three seedlings.  相似文献   

10.
Rabe E  Lovatt CJ 《Plant physiology》1984,76(3):747-752
Young, fully expanded leaves from 7-month-old P-deficient citrus rootstock seedlings had levels of nonprotein arginine that were 10- to 50-fold greater than those from P-sufficient control plants. Arginine content of the protein fraction increased 2- to 4-fold in P-deficient leaves. Total arginine content, which averaged 72 ± 6 micromoles per gram dry weight of P-sufficient leaf tissue (mean ± se, n = the four rootstocks) was 207, 308, 241, and 178 micromoles in P-deficient leaves from Citrus limon cv rough lemon, Poncirus trifoliata × C. sinensis cv Carrizo citrange and cv Troyer citrange, and P. trifoliata cv Australian trifoliate orange, respectively. For each rootstock, the accumulation of arginine paralleled an increase in the activity of the pathway for the de novo biosynthesis of arginine. The ratio of the nanomoles NaH14CO3 incorporated into the combined pool of arginine plus urea per gram fresh weight intact leaf tissue during a 3-hour labeling period for P-deficient to P-sufficient plants was 91:34, 49:11, 35:11, and 52:41, respectively. When P-deficient plants were supplied with P, incorporation of NaH14CO3 into arginine plus urea was reduced to the level observed for the P-sufficient control plants of the same age and arginine ceased to accumulate. Arginase and arginine decarboxylase activity were either unaffected or slightly increased during phosphorus deficiency. Taken together, these results provide strong evidence that arginine accumulation during phosphorus deficiency is due to increased activity of the de novo arginine biosynthetic pathway.  相似文献   

11.

Aims

Variation in boron (B) efficiency in citrus in different rootstock genotypes is expressed as large differences in the occurrence of leaf symptoms and dry mass production under low B conditions, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B uptake, cellular B allocation, and pectin content can explain genotype differences in B efficiency between B-efficient citrange (Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.) and B-inefficient trifoliate orange (Poncirus trifoliata (L.) Raf.) citrus rootstock.

Methods

Plants were grown hydroponically in a nutrient solution supplemented with 5 μM B for 14 days and then transferred to a B-free medium (0 μM B) or control medium (5 μM B) for 35 days. Boron uptake and allocation and cell wall pectin contents were examined.

Results

After 35 days under B deprivation, shoot dry mass in trifoliate orange decreased by 28 %, but shoot dry mass of citrange was not significantly affected. Root growth of both types of rootstock seedlings was inhibited, but the trifoliate orange was affected more than the citrange. In comparison with B concentrations in plants prior to the commencement of B treatments, B deprivation for 35 days decreased B concentration in various parts of citrange plants, and the reduction was much greater in trifoliate orange plants. Trifoliate orange seedlings contained higher B concentration and total B in cell wall on a dry leaf basis than citrange subject to 5 μM B treatment. However, the proportion of leaf B allocated in cell wall was higher in citrange than trifoliate orange when B supply was deficient in the nutrient. The changes in pectin composition in cell wall due to B deprivation differed between citrange and trifoliate orange. The decreased uronic acid (UA) content in the Na2CO3-soluble pectin was observed in both rootstock, but the increased UA content in CDTA-soluble pectin was observed only in citrange.

Conclusions

These results demonstrated that a combination of greater B uptake ability, greater B accumulation in cell walls, as well as the increased CDTA-soluble pectin, under limited external B supply, contribute to the integrity of cell walls in citrange and therefore increased tolerance to B deficiency.  相似文献   

12.
We have previously developed procedures for the efficient production of sweet orange (Citrus sinensis L. Osbeck) and Carrizo citrange (C. sinensis L. Osbeck×Poncirus trifoliata L. Raf.) transgenic plants using an Agrobacterium tumefaciens-mediated transformation and shoot tip grafting in vitro regeneration system. We now report on the optimization of the cocultivation, regeneration and selection conditions for efficient and reliable production of transgenic lime (C. aurantifolia Swing.) plants. Improved transformation frequencies were obtained by cocultivating the explants with Agrobacterium on feeder plates. Optimum regeneration of transgenic shoots was obtained by exposing the explants to darkness for 2 weeks and by using kanamycin at 100 mg/l as selective agent. Attempts to use geneticin as selection antibiotic were not successful. Shoot tip grafting of regenerated shoots on Troyer citrange seedlings resulted in 100% successful production of transgenic plants. The presence and expression of the transferred genes in the regenerated plants was verified by β-glucuronidase histochemical and fluorimetric assays, neomycin phosphotransferase ELISA assays, PCR and Southern analyses. Received: 10 December 1996 / Revision received: 10 February 1997 / Accepted: 25 February 1997  相似文献   

13.
An improved protocol for genetic transformation of juvenile explants of Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.), Duncan (Citrus paradisi Macf.), Hamlin (Citrus sinensis (L.) Osbeck) and Mexican Lime (Citrus aurantifolia Swingle) cultivars using a vector containing a bifunctional egfp-nptII fusion gene is described. Several parameters were investigated to optimize genetic transformation of these four cultivars. It was determined that a short preincubation in hormone rich liquid medium and subculture of Agrobacterium for 3 h in YEP medium containing 100 μM acetosyringone were required for improvement of transformation efficiency. Co-cultivation duration as well as addition of acetosyringone to co-cultivation medium also played an important role in transformation efficiency as did OD600 value of the Agrobacterium suspension used for transformation. We regenerated numerous EGFP expressing transgenic lines from all four cultivars. Based on these results, we conclude that genetic transformation of citrus is cultivar specific and optimization of conditions for maximum transgenic production are required for each individual cultivar.  相似文献   

14.
Eleven RAPD markers linked to a gene region conferring resistance to citrus nematodes in an intergen-eric backcross family were identified. Two sequence- characterized amplified region markers linked to a citrus tristeza virus resistance gene and one selected resistance gene candidate marker were evaluated for their association with citrus nematode resistance. A nematode-susceptible citrus hybrid, LB6-2 [Clementine mandarin (Citrus reticulata)×Hamlin orange (C. sinensis)], was crossed with the citrus nematode-resistant hybrid Swingle citrumelo (C. paradisi×Poncirus trifoliata) to produce 62 hybrids that were reproduced by rooted cuttings. The plants were grown in a greenhouse and inoculated with nematodes isolated from infected field trees. The hybrids segregated widely for this trait in a continuous distribution, suggesting possible polygenic control of the resistance. Bulked segregant analysis was used to identify markers associated with resistance by bulking DNA samples from individuals at the phenotypic distribution extremes. Linkage relationships were established by the inheritance of the markers in the entire population. A single major gene region that contributes to nematode resistance was identified. The resistance was inherited in this backcross family from the grandparent Poncirus trifoliata as a single dominant gene. QTL analysis revealed that 53.6% of the phenotypic variance was explained by this major gene region. The existence of other resistance-associated loci was suggested by the continuous phenotypic distribution and the fact that some moderately susceptible hybrids possessed the resistance-linked markers. The markers may be useful in citrus rootstock breeding programs if it can be demonstrated that they are valid in other genetic backgrounds. Received: 4 May 1999 / Accepted: 21 September 1999  相似文献   

15.
The responses of roots to feeding by larvae of a citrus root weevil (Diaprepes abbreviatus) were investigated in Citrus grandis (L.) Osb. x Poncirus trifoliata (2N) (L.) Raf.; C. grandis x P. trifoliata (4N); P. trifoliata x C. grandis (Flying Dragon x Nakon); C. paradisi Macf. x P. trifoliata (Swingle citrumelo); C. aurantifolia (Christm.) Swingle (Citrus macrophylla); C. reticulata Blanco (Cleopatra mandarin); C. sinensis (L.) Osb. x P. trifoliata (Carrizo citrange); C. aurantium (L.) (sour orange). Chitinase, chitosanase. β-1,3-glucanase, peroxidase and lysozyme activities were measured and significant differences were observed for some of the cultivars between infested and uninfested rootstocks. Generally, increased activities were observed for chitinases and decreased activities were observed for the other enzymes measured. Numerous significant differences in hydrolase and peroxidase activities were observed between cultivars. Immunological detection revealed that new protein bands occurred in root protein extracts for six of the eight cultivars infested with larvae when an antibody to a class I potato leaf chitinase was used. Antibodies generated against two citrus chitinases of Mr 24 000 (basic chitinase cv. Valencia (C. sinensis) callus, BCVC) and Mr 28 000 (basic chitinase/lysozyme cv. Valencia callus, BCLVC) indicated that chitinases in Carrizo were induced in infested roots when the BCVC antibody was employed. These findings justify calling these proteins pathogenesis-related proteins. The chitinase that BCLVC was prepared from exhibited high lysozyme activities, and the results of western blots showed the presence of proteins at Mr 24 000 and 27 000 which are presumed to be lysozymes. Similar tests using antibodies against β-1, 3-glucanases and peroxidases indicated a diminution of protein bands that cross-reacted with infested root protein extracts compared with what occurred in controls. All of the root extracts were tested against chitosans with various percentages of acetylation; activities were linearly dependent on the amount of chitosan acetylation; i.e. the larger the amount of acetylation, the greater the activity. Significant differences in hydrolase activities were observed between infested and uninfested roots for the rootstocks using the variously acetylated substrates. All of the root protein extracts were capable of degrading peritrophic membranes removed from larvae of D. abbreviatus. This suggests that citrus chitinases may play a role in disrupting the peritrophic membrane such that ingested substances that pose a hazard to the insect may penetrate the membrane more easily.  相似文献   

16.
Effects of Salinity on Some Citrus Scion-Rootstock Combinations   总被引:3,自引:0,他引:3  
Chloride and sodium concentrations, water relations and gasexchange parameters were measured on leaves of Clementine (CitrusClementine Hort. ex. Tan) and Navel orange [C. sinensis (L.)Osb] scions grafted on Cleopatra mandarin (C. reticulata Blanco)and Troyer citrange (C. sinensis x Poncirus trifoliata) rootstocksgrown at increasing levels of NaCl in the external medium. Otherparameters affected by salinity such as growth and defoliationwere also recorded. Scions on Cleopatra mandarin accumulated less Cl- in their leavesthan did scions on Troyer citrange. Also, leaf Cl- levels inClementine scions were lower than in Navel orange when bothwere grafted on the same rootstock. However, sodium concentrationwas lower in scions on Troyer citrange than in Cleopatra mandarin. Leaf water potential, stomatal conductance, photosynthesis andgrowth were reduced more in grafted plants of salt-treated Navelorange than those of salt-treated Clementine. However, choiceof rootstock had little effect on salt-induced changes in theseparameters. For each scion, reduction in leaf stomatal conductancewas closely correlated with decrease in leaf water potential.Also, a significant correlation between photosynthesis and stomatalconductance was found. The results indicate that reductions in gas exchange parametersand growth at increasing salinity levels depended more on thescion type than on Cl- or Na+ concentration in leaves. Otherwise,leaf injury and defoliation were closely correlated with leafCl- concentration.Copyright 1995, 1999 Academic Press Citrus, photosynthesis, salinity, water relations  相似文献   

17.
Summary Isozymes and restriction fragment length polymorphisms were used as markers in the construction of a genetic map of the citrus nuclear genome. The map was based on the segregation of 8 isozyme, 1 protein, and 37 RFLP loci in 60 progeny of a cross of two intergeneric hybrids, Sacaton citrumelo (Citrus paradisi Macf. x Poncirus trifoliata (L.) Raf.) and Troyer citrange (C. sinensis (L.) Osbeck x P. trifoliata), often used as rootstocks. The map contains 38 of 46 studied loci distributed on ten linkage groups. A genome size of 1,700 cM was estimated from partial linkage data. Approximately 35% of the genome should be within 10 cM and 58% within 20 cM of the mapped markers. Eight loci in three linkage groups and 1 unlinked locus deviated significantly from Mendelian segregation.  相似文献   

18.
Abstract Fibrous roots of four citrus hybrids and parent rootstocks from which the hybrids were generated, all selected for their different Cl? exclusion abilities, were assayed for phospholipid, galactolipid and free 4-desmethylsterol content. There was no correlation between a plant's ability to exclude Cl? and the level of either phospholipid, galactolipid, or total free sterol in the roots of control plants. However, an inverse correlation was established between the ratio of phospholipid to free sterol in control roots and total leaf Cl? levels of plants treated with 50 mol m?3 NaCl for 56 d. With the exception of a significant decrease in hybrid 80-05-05, galactolipid levels were unaffected by salt treatment. Phospholipid levels were significantly increased in two parent rootstocks viz. Trifoliate orange (Poncirus trifoliata (L.). Raf.) and Carrizo citrange (Citrus sinensis (L.) Osbeck ×P. trifoliata) and one hybrid (80-02-08) but were otherwise unchanged by salt treatment. Free sterol levels were significantly increased by salt treatment in all of the better Cl? excluders except Carrizo citrange i.e. in Rangpur lime (Citrus reticulata Blanco var. austera hybrid?), Cleopatra mandarin (Citrus reticulata Blanco) and all hybrids except 80–05–13. In all genotypes examined, salt-treatment resulted in a significant decrease in the ratio of sitosterol to stigmasterol reflecting, primarily, an increase in the stigmasterol level. The two poorer Cl? excluders (Trifoliate orange and hybrid 80–05–13) both underwent a significant decrease in the ratio of ‘more planar’ to ‘less planar’ sterols. The inverse correlation between the phospholipid to free sterol ratio of control plants and leaf Cl? level of salt treated plants suggests that this ratio has the potential to be used as a biochemical marker of Cl? exclusion ability in citrus.  相似文献   

19.
Two-year-old Navel orange scions (Citrus sinensis (L.) Osbeck) budded to either Cleopatra mandarin (C. reticulata) and Troyer citrange (C. sinensis × P. trifoliata) rootstocks were used in this experiment. Cleopatra manda in rootstock was considered more tolerant to salinity than Troyer citrange, and this property was attributed to a greater capacity to exclude chloride ions.Plants were grown under glasshouse conditions and supplied with nutrient solution containing either no or 45 mM NaCl. Calcium concentration was increased from 3 to 30 mM. Sodium, potassium, calcium and chloride concentrations in plant organs were analyzed after 90 days of treatment.Supplemental Ca was found to mitigate the adverse effects of salinity on plant growth, defoliation or leaf injury.Chemical analysis indicated that in plants grafted on Troyer citrange Ca restricted uptake and subsequent translocation of Na to the leaves and increased K concentration in both roots and leaves. However, in Cleopatra mandarin-grafted plants increasing Ca levels seemed to reduce transport of Na from roots to leaves, and Na accumulation in roots was associated with reduced concentration of K in this rootstock.Organ chloride analysis showed that Cl accumulation in leaves of plants grafted on both rootstocks was reduced when external Ca concentration increased, whereas Cl concentration in roots remained constant or increased. The data of distribution of Cl in plants showed that a high external Ca level increased Cl accumulation in the basal stem and roots, and reduced the transport of Cl from roots to leaves.  相似文献   

20.
Invertase activity increased in the flavedo tissue of ‘Marsh’ grapefruit (Citrus paradisi Macf.) when trees were exposed to cold hardening temperatures and decreased at dehardening temperatures. Invertase activity also increased in the flavedo of detached fruit stored at 5δ. Reducing sugar levels paralleled invertase activity while sucrose levels were inversely related to invertase levels. The mechanism by which low temperatures induce invertase activity in grapefruit flavedo tissue was not determined. However, results indicated that a proteinaceous inhibitor, similar to the one found in potato tubers, is not involved in the regulation of invertase activity in flavedo tissue of grapefruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号