首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or double-stranded phi X174 DNA of spheroplasts from a strain containing such a "reduction" plasmid shows a strong decrease in phage yield. This phenomenon, the phi X reduction effect, was studied in more detail by using the phi X174 packaging system, by which plasmid DNA strands that contain the phi X(+) origin of replication were packaged as single-stranded DNA into phi X phage coats. These "plasmid particles" can transduce phi X-sensitive host cells to the antibiotic resistance coded for by the vector part of the plasmid. The phi X reduction sequence in the resident plasmid strongly affected the efficiency of the transduction process, but only when the transducing plasmid depended on primosome-mediated initiation of DNA synthesis for its conversion to double-stranded DNA. The combination of these results led to a model for the reduction effect in which the phi X reduction sequence interacted with an intracellular component that was present in limiting amounts and that specified the site at which phi X174 replicative-form DNA replication takes place. The phi X reduction sequence functioned as a viral incompatibility element in a way similar to the membrane attachment site model for plasmid incompatibility. In the DNA of bacteriophage G4, a sequence with a similar biological effect on infecting phages was identified. This reduction sequence not only inhibited phage G4 propagation, but also phi X174 infection.  相似文献   

2.
Homologous recombination (HR) is initiated by DNA double-strand breaks (DSB). However, it remains unclear whether single-strand lesions also initiate HR in genomic DNA. Chicken B lymphocytes diversify their Immunoglobulin (Ig) V genes through HR (Ig gene conversion) and non-templated hypermutation. Both types of Ig V diversification are initiated by AID-dependent abasic-site formation. Abasic sites stall replication, resulting in the formation of single-stranded gaps. These gaps can be filled by error-prone DNA polymerases, resulting in hypermutation. However, it is unclear whether these single-strand gaps can also initiate Ig gene conversion without being first converted to DSBs. The Mre11-Rad50-Nbs1 (MRN) complex, which produces 3′ single-strand overhangs, promotes the initiation of DSB-induced HR in yeast. We show that a DT40 line expressing only a truncated form of Nbs1 (Nbs1p70) exhibits defective HR-dependent DSB repair, and a significant reduction in the rate—though not the fidelity—of Ig gene conversion. Interestingly, this defective gene conversion was restored to wild type levels by overproduction of Escherichia coli SbcB, a 3′ to 5′ single-strand–specific exonuclease, without affecting DSB repair. Conversely, overexpression of chicken Exo1 increased the efficiency of DSB-induced gene-targeting more than 10-fold, with no effect on Ig gene conversion. These results suggest that Ig gene conversion may be initiated by single-strand gaps rather than by DSBs, and, like SbcB, the MRN complex in DT40 may convert AID-induced lesions into single-strand gaps suitable for triggering HR. In summary, Ig gene conversion and hypermutation may share a common substrate—single-stranded gaps. Genetic analysis of the two types of Ig V diversification in DT40 provides a unique opportunity to gain insight into the molecular mechanisms underlying the filling of gaps that arise as a consequence of replication blocks at abasic sites, by HR and error-prone polymerases.  相似文献   

3.
Transformation of Saccharomyces cerevisiae strains was examined by using the URA3 and TRP1 genes cloned into M13 vectors in the absence of sequences capable of promoting autonomous replication. These constructs transform S. cerevisiae cells to prototrophy by homologous recombination with the resident mutant gene. Single-stranded DNA was found to transform S. cerevisiae cells at efficiencies greater than that of double-stranded DNA. No conversion of single-stranded transforming DNA into duplex forms could be detected during the transformation process, and we conclude that single-stranded DNA may participate directly in recombination with chromosomal sequences. Transformation with single-stranded DNA gave rise to both gene conversion and reciprocal exchange events. Cotransformation with competing heterologous single-stranded DNA specifically inhibited transformation by single-stranded DNA, suggesting that one of the components in the transformation-recombination process has a preferential affinity for single-stranded DNA.  相似文献   

4.
Escherichia coli cells infected with gene H mutants of bacteriophage phi X174 produce two types of particles. The 110S particles contain single-stranded circular DNA; the 110S particles are not infectious, although their DNA is infectious for E. coli spheroplasts. The second type of particles, 70S particles, contain a fragment of single-stranded DNA ranging from 0.2 to 0.5 genome in length. This fragment DNA anneals only to restriction enzyme fragments of replicative-form DNA from the portion of the molecule corresponding to the origin and early region of phi X174 single-stranded synthesis, although full-round single-stranded DNA synthesis is occurring in the H mutant-infected cells. Different H mutant phages produce different proportions of 70S to 110S particles; those mutants producing the most 70S also exhibit the largest amount of degradation of intracellularly labeled DNA during infection. These results suggest that in H mutant-infected cells, full-length single-stranded DNA is synthesized; varying amounts of degradation of the single-stranded material occur, and the resulting fragment DNA is subsequently incorporated into 70S particles.  相似文献   

5.
Autonomous parvoviruses are thought to uniquely encapsidate single-stranded DNA of minus polarity. In contrast, the defective adeno-associated viruses separately encapsidate equal amounts of plus and minus DNA strands. We reexamined the uniqueness of minus strand encapsidation for the autonomous parvoviruses. Although we found that Kilham rat virus and H-1 virus encapsidate varying but small amounts of complementary-strand DNA, it was unexpected to find that LuIII virus encapsidated equal amounts of plus and minus DNA. The extracted LuIII DNA possessed properties of double-stranded replicative-form DNA, including insensitivity to S1 endonuclease, cleavage by restriction enzymes, and conversion to unit-length, single-stranded DNA when electrophoresed under denaturing conditions. However, the inability of this DNA to form single-stranded DNA circles when denatured and then renatured in the presence of formamide and the lack of double-stranded DNA circle formation after treatment with exonuclease III and reannealing shows a lack of sequence homology of the 3' and 5' termini of LuIII DNA, in contrast to adeno-associated virus DNA. Digestion of LuIII double-stranded DNA with EcoRI and HincII and separation of plus and minus DNA strands on composite agarose-acrylamide gels identified a heterogeneity present only in the plus DNA strand. These results suggest that strand specificity of viral DNA encapsidation is not a useful property for differentiation between the autonomous and defective parvoviruses. Furthermore, encapsidation by LuIII of equal amounts of complementary DNA strands in contrast to encapsidation of minus strands by H-1 virus, when propagated in the same host cell type, suggests that selection of strands for encapsidation is a virus-coded rather than host-controlled event.  相似文献   

6.
A mutant BamHI endonuclease, E77K, belongs to a class of catalytic mutants that bind DNA efficiently but cleave DNA at a rate more than 10(3)-fold lower than that of the wild-type enzyme (S. Y. Xu and I. Schildkraut, J. Biol. Chem. 266:4425-4429, 1991). The preferred cofactor for the wild-type BamHI is Mg2+. BamHI is 10-fold less active with Mn2+ as the cofactor. In contrast, the E77K variant displays an increased activity when Mn2+ is substituted for Mg2+ in the reaction buffer. Mutations that partially suppress the E77K mutation were isolated by using an Escherichia coli indicator strain containing the dinD::lacZ fusion. These pseudorevertant endonucleases induce E. coli SOS response (as evidenced by blue colony formation) and thus presumably nick or cleave chromosomal DNA in vivo. Consistent with the in vivo result, the pseudorevertant endonucleases in the crude cell extract display site-specific partial DNA cleavage activity. DNA sequencing revealed two unique suppressing mutations that were located within two amino acid residues of the original mutation. Both pseudorevertant proteins were purified and shown to increase specific activity at least 50-fold. Like the wild-type enzyme, both pseudorevertant endonucleases prefer Mg2+ as the cofactor. Thus, the second-site mutation not only restores partial cleavage activity but also suppresses the metal preference as well. These results suggest that the Glu-77 residue may play a role in metal ion binding or in enzyme activation (allosteric transition) following sequence-specific recognition.  相似文献   

7.
Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the sequence alteration while RNA residues aid in complex stability. In this study, the two strands were separated in the hope of defining the role each plays in conversion. Using a series of single-stranded oligonucleotides, comprised of all RNA or DNA residues and various mixtures, several new structures have emerged as viable molecules in nucleotide conversion. When extracts from mammalian and plant cells and a genetic readout assay in bacteria are used, single-stranded oligonucleotides, containing a defined number of thioate backbone modifications, were found to be more active than the original chimera structure in the process of gene repair. Single-stranded oligonucleotides containing fully modified backbones were found to have low repair activity and in fact induce mutation. Molecules containing various lengths of modified RNA bases (2′-O-methyl) were also found to possess low activity. Taken together, these results confirm the directionality of nucleotide conversion by the DNA strand of the chimera and further present a novel, modified single-stranded DNA molecule that directs conversion in plant and animal cell-free extracts.  相似文献   

8.
Gene A protein of bacteriophage phi X174 plays a role as a site-specific endonuclease in the initiation and termination of phi X rolling circle DNA replication. To clarify the sequence requirements of this protein we have studied the cleavage of single-stranded restriction fragments from phi X and G4 viral DNAs using purified gene A protein. The results show that in both viral DNAs cleavage occurs at the origin and at one additional site which shows striking sequence homology with the origin region. During rolling circle replication the single-stranded viral DNA tail is covered with single-stranded DNA binding (SSB) protein. Therefore, we have also studied the effect of SSB on phi X gene A protein cleavage. In these conditions only single-stranded fragments containing the complete or almost complete origin region of 30 bases are cleaved, whereas cleavage at the additional sites of phi X or G4 viral DNAs does not occur. A model for termination of rolling circle replication which is based on these findings is presented. Finally, we present evidence that the second product of gene A, the A* protein, cleaves phi X viral DNA at the additional cleavage site in the presence of SSB, not only in vitro but also in vivo. The functional significance of this cleavage in vivo is discussed.  相似文献   

9.
We described product analysis of DNA synthesized in chloroplast lysate from liverwort Marchantia polymorpha L. cell suspension cultures. Characteristics of in vitro DNA synthesis by chloroplast lysate using bacteriophage ?X174 single-stranded DNA were very similar to those in the case of double-stranded calf thymus DNA reported previously. Autoradiographic analysis clearly showed the incorporation of radioactive [α-32P]-dCTP into DNA molecules associated with bacteriophage ?X174 single-stranded template DNA, indicating conversion of bacteriophage ?X174 single-stranded DNA to double-stranded DNA (RF III, double-stranded linear molecule). Experiments on the fate of [32P]-labeled single-stranded DNA also showed a clear conversion of the single-stranded DNA to double-stranded DNA. Furthermore, patterns of sucrose density gradient centrifugations (neutral and alkaline) showed the production of two major components in in vitro DNA synthesis by chloroplast lysate. This also indicated conversion of bacteriophage ?X174 single-stranded DNA to double-stranded DNA (RF III form). Our results suggest that the mechanism of chloroplast DNA replication could be the mode of strand-displacement DNA synthesis as seen in animal mitochondrial DNA synthesis.  相似文献   

10.
It is already known that phi X gene A protein converts besides phi X RFI DNA also the RFI DNAs of the single-stranded bacteriophages G4, St-1, alpha 3 and phi K into RFII DNA. We have extended this observations for bacteriophages G14 and U3. Restriction enzyme analysis placed the phi X gene A protein cleavage site in St-1 RF DNA in the HinfI restriction DNA fragment F10 and in the overlapping HaeIII restriction DNA fragment Z7. The exact position and the nucleotide sequence at the 3'-OH end of the nick were determined by DNA sequence analysis of the single-stranded DNA subfragment of the nicked DNA fragment F10 obtained by gelelectrophoresis in denaturing conditions. A stretch of 85 nucleotides of St-1 DNA around the position of the phi X gene A protein cleavage site was established by DNA sequence analysis of the restriction DNA fragment Z7F1. Comparison of this nucleotide sequence with the previously determined nucleotide sequence around the cleavage site of phi X gene A protein in phi X174 RF DNA and G4 RF DNA revealed an identical sequence of only 10 nucleotides. The results suggest that the recognition sequence of the phi X174 gene A protein lies within these 10 nucleotides.  相似文献   

11.
The DNA sequence of 30 nucleotides which surrounds the origin of viral strand DNA replication is highly conserved amongst the icosahedral single-stranded DNA bacteriophages. The A gene of these phages encodes a protein which is required for initiation and termination of viral strand DNA synthesis and acts as a nicking-closing activity specifically within this 30-nucleotide sequence. A system of purified Escherichia coli host proteins and phi X174 gene A protein has been developed which specifically replicates in vitro the viral strand of phi X174 from RF (replicative form) I template DNA and yields single-stranded circular DNA products (RF leads to SS(c) DNA replication system). Recombinant plasmids carrying inserts derived from phage phi X174 or G4 DNA which range in length from 49 to 1175 base pairs and contain the 30-nucleotide conserved sequence have been shown to support phi X A protein-dependent DNA synthesis in vitro in this replication system. We report here that insertion of the 30-nucleotide sequence alone into pBR322 allows the resulting recombinant plasmids to support phi X A protein-dependent in vitro DNA synthesis as efficiently as phi X174 template DNA in the RF leads to SS(c) replication system. The 30-nucleotide sequence functions as a fully wild type DNA replication origin as determined by the rate of DNA synthesis and the structure of resulting DNA products. Furthermore, the DNA sequence requirements for nicking of RF I DNA by the phi X A protein and for supporting replication origin function have been partially separated. Homology to positions 1, 29, and 30 of the 30-nucleotide conserved sequence are not required for cleavage of RF I DNA by the A protein; homology to position 1 but not 29 or 30 is required for efficient DNA replication.  相似文献   

12.
We designed a shuttle vector system that allowed a comparison of the mutation spectrum on the supF target gene after transfection of single-stranded or double-stranded DNA into monkey cells. Single-strand-derived plasmids exhibited a spontaneous mutation frequency tenfold higher than double-strand-derived ones. These spontaneous mutations comprised deletions and point substitutions. This system was applied to the study of ultraviolet-induced mutagenesis. Single-stranded DNA exhibited a lower survival and a higher mutation frequency than double-stranded DNA after identical ultraviolet-irradiation. The use of single-stranded DNA allowed us to confirm and complete the data about the targeting of ultraviolet-induced mutations and the exact nature of the base changes involved. One class of mutations was more frequent after transfection of ultraviolet-irradiated single-stranded DNA than for double-stranded DNA: frameshifts represented 10% of the mutants. Multiple mutations, attributed by some authors to an error-prone excision repair process, have also been observed in the spontaneous and ultraviolet-induced mutation spectra following single-stranded DNA transfection, although it cannot be a direct substrate for excision repair.  相似文献   

13.
C1 inhibitor gene sequence facilitates frameshift mutations.   总被引:3,自引:0,他引:3       下载免费PDF全文
Mutations disrupting the function or production of C1 inhibitor cause the disease hereditary angioneurotic edema. Patient mutations identified an imperfect inverted repeat sequence that was postulated to play a mechanistic role in the mutations. To test this hypothesis, the inverted repeat was cloned into the chloramphenicol acetyltransferase gene in pBR325 and its mutation rate was studied in four bacterial strains. These strains were selected to assay the effects of recombination and superhelical tension on mutation frequency. Mutations that revert bacteria to chloramphenicol resistance (Cmr) were scored. Both pairs of isogenic strains had reversion frequencies of approximately 10(-8). These rare reversion events in bacteria were most often a frameshift that involved the imperfect inverted repeat with a deletion or a tandem duplication, an event very similar to the human mutations. Increased DNA superhelical tension, which would be expected to enhance cruciform extrusion, did not accentuate mutagenesis. This finding suggests that the imperfect inverted repeat may form a stem-loop structure in the single-stranded DNA created by the duplex DNA melting prior to replication. Models explaining the slippage can be drawn using the lagging strand of the replication fork. In this model, the formation of a stem-loop structure is responsible for bringing the end of the deletion or duplication into close proximity.  相似文献   

14.
The recJ gene encodes a single-strand DNA-specific exonuclease involved in homologous recombination. We have isolated a pseudorevertant strain in which recJ mutant phenotypes were alleviated. Suppression of recJ was due to at least three mutations, two of which we have identified as alterations in DNA helicase genes. A recessive amber mutation, ``uvrD517(am),' at codon 503 of the gene encoding helicase II was sufficient to suppress recJ partially. The uvrD517(am) mutation does not eliminate uvrD function because it affects UV survival only weakly; moreover, a uvrD insertion mutation could not replace uvrD517(am) as a suppressor. However, suppression may result from differential loss of uvrD function: mutation rate in a uvrD517(am) derivative was greatly elevated, equal to that in a uvrD insertion mutant. The second cosuppressor mutation is an allele of the helD gene, encoding DNA helicase IV, and could be replaced by insertion mutations in helD. The identity of the third cosuppressor ``srjD' is not known. Strains carrying the three cosuppressor mutations exhibited hyperrecombinational phenotypes including elevated excision of repeated sequences. To explain recJ suppression, we propose that loss of antirecombinational helicase activity by the suppressor mutations stabilizes recombinational intermediates formed in the absence of recJ.  相似文献   

15.
It has been proposed that DNA methylation is involved in the mechanism of X inactivation, the process by which equivalence of levels of X-linked gene products is achieved in female (XX) and male (XY) mammals. In this study, Southern blots of female and male DNA digested with methylation-sensitive restriction endonucleases and hybridized to various portions of the cloned mouse hprt gene were compared, and sites within the mouse hprt gene were identified that are differentially methylated in female and male cells. The extent to which these sites are methylated when carried on the active and inactive X chromosomes was directly determined in a similar analysis of DNA from clonal cell lines established from a female embryo derived from a mating of two species of mouse, Mus musculus and Mus caroli. The results revealed two regions of differential methylation in the mouse hprt gene. One region, in the first intron of the gene, includes four sites that are completely unmethylated when carried on the active X and extensively methylated when carried on the inactive X. These same sites are extensively demethylated in hprt genes reactivated either spontaneously or after 5-azacytidine treatment. The second region includes several sites in the 3' 20kilobases of the gene extending from exon 3 to exon 9 that show the converse pattern; i.e., they are completely methylated when carried on the active X and completely unmethylated when carried on the inactive X. At least one of these sites does not become methylated after reactivation of the gene. The results of this study, together with the results of previous studies by others of the human hprt gene, indicate that these regions of differential methylation on the active and inactive X are conserved between mammalian species. Furthermore, the data described here are consistent with the idea that at least the sites in the 5' region of the gene play a role in the X inactivation phenomenon and regulation of expression of the mouse hprt gene.  相似文献   

16.
D E Riley 《Biochemistry》1980,19(13):2977-2992
Production of 10-base multiple DNA ladder fragments during DNase I digestion of chromatin is explained by a model which does not involve site-specific nicking by the DNase I. This model was tested because it explains why 10-base (actually 10.4 base) multiple-related fragments are paradoxically generated by both endonucleolytic (DNase I) and exonucleolytic (exonuclease III) mechanisms. This new model also explains the phenomenon of substantial single-stranded DNA production during DNase I digestion of chromatin. The latter phenomenon has been widely observed but is not explained by previous models. The single-stranded gap model to be presented makes testable predictions. Primarily, these are that DNase I produces single-stranded gaps in chromatin DNA and that the termini of 10-base multiple ladder fragments are separated by single-stranded gaps. Single-stranded gap production by DNase I was confirmed by a number of methods. Sensitivity of ladder band components (from DNase I but not staphylococcal nuclease digests) to S1 nuclease suggested that the ladder fragments themselves may compose a significant portion of these gaps. Separation of ladder fragment termini by single-stranded gaps was verified by demonstrating both resistance to the nick-specific NAD+-dependent ligase and sensitivity to T4 ligase which can ligate across gaps. Many single-stranded gaps, occurring both individually and clusters, were observed by electron microscopy using either cytochrome c labeling (where the gaps) are thinner than duplex) or gene 32 protein labeling (gaps thicker than duplex). Gap sizes were estimated by protecting them with gene 32 protein and digesting away unprotected duplexes. By this method, gap sizes fall into a ladder distribution (from 10 or 20 bases up to 120 bases), which, at least in the region of the shorter sizes, clearly indicates the sizes of single-stranded gaps formed in chromatin by DNase I.  相似文献   

17.
S Casjens  M B Adams  C Hall    J King 《Journal of virology》1985,53(1):174-179
In the assembly of bacteriophage P22, precursor particles containing two major proteins, the gene 5 coat protein and the gene 8 scaffolding protein, package the DNA molecule. During the encapsidation reaction all of the scaffolding protein molecules are released intact and subsequently participate in further rounds of DNA encapsidation. We have previously shown that even though it lies in the center of the late region of the genetic map, the scaffolding protein gene is not always expressed coordinately with the remainder of the late proteins and that some feature of the phage assembly process affects its expression. We present here in vivo experiments which show that there is an inverse correlation between the amount of unassembled scaffolding protein and the rate of scaffolding protein synthesis and that long amber fragments of the scaffolding protein can turn down the synthesis of intact scaffolding protein in trans. These results support a model for scaffolding protein regulation in which the feature of the assembly process which modulates the rate of scaffolding protein synthesis is the amount of unassembled scaffolding protein itself.  相似文献   

18.
The annealing of complementary strands of DNA is a vital step during the process of DNA replication, recombination, and repair. In bacteriophage T7-infected cells, the product of viral gene 2.5, a single-stranded DNA-binding protein, performs this function. We have identified a single amino acid residue in gene 2.5 protein, arginine 82, that is critical for its DNA annealing activity. Expression of gene 2.5 harboring this mutation does not complement the growth of a T7 bacteriophage lacking gene 2.5. Purified gene 2.5 protein-R82C binds single-stranded DNA with a greater affinity than the wild-type protein but does not mediate annealing of complementary strands of DNA. A carboxyl-terminal-deleted protein, gene 2.5 protein-Delta26C, binds even more tightly to single-stranded DNA than does gene 2.5 protein-R82C, but it anneals homologous strands of DNA as well as does the wild-type protein. The altered protein forms dimers and interacts with T7 DNA polymerase comparable with the wild-type protein. Gene 2.5 protein-R82C condenses single-stranded M13 DNA in a manner similar to wild-type protein when viewed by electron microscopy.  相似文献   

19.
Prospects of chimeric RNA-DNA oligonucleotides in gene therapy   总被引:3,自引:0,他引:3  
A strategy called targeted gene repair was developed to facilitate the process of gene therapy using a chimeric RNA-DNA oligonucleotide. Experiments demonstrated the feasibility of using the chimeric oligonucleotide to introduce point conversion in genes in vitro and in vivo. However, barriers exist in the low and/or inconstant frequency of gene repair. To overcome this difficulty, three main aspects should be considered. One is designing a more effective structure of the oligonucleotide. Trials have included lengthening the homologous region, displacing the mismatch on the chimeric strand and inventing a novel thioate-modified single-stranded DNA, which was demonstrated to be more active than the primary chimera in cell-free extracts. The second aspect is optimizing the delivery system. Producing synthetic carriers for efficient and specific transfection is demanding, especially for treatment in vivo where targeting is difficult. The third and most important aspect lies in the elucidation of the mechanism of the strategy. Investigation of the mechanism of strand exchange between the oligonucleotide molecule and double-stranded DNA in prokaryotes may greatly help to understand the mechanism of gene repair in eukaryotes. The development of this strategy holds great potential for the treatment of genetic defects and other purposes.  相似文献   

20.
Gene II protein is required for all phases of filamentous phage DNA synthesis other than the conversion of the infecting single strand to the parental double-stranded molecule. It introduces a specific nick into the double-stranded replicative form DNA, is required for the initiation of (+) strand synthesis and is responsible for termination and ring closure of the (+) strand product. Here we show that the gene II protein also promotes minus strand synthesis later in infection. Over-expression of gene II protein can induce the conversion of all nascent single-stranded phage DNA to the double-stranded form, even in the presence of the single-stranded DNA-binding gene V protein that would normally sequester the newly synthesized single strands. We also present evidence that the gene X protein (separately translated from an initiator codon within gene II, and identical to the C-terminal one-third of the gene II protein) is a powerful inhibitor of phage-specific DNA synthesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号