首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We cloned the structural gene topl+ for Schizosaccharomyces pombe DNA topoisomerase I (topo I) by hybridization. An eight-fold increase of topo I relaxing activity was obtained in S. pombe cells transformed with multicopy plasmid with topl+ insert. Nucleotide sequence determination showed a hypothetical coding frame interrupted by two short introns, encoding a 812 residue polypeptide (M.W. 94,000), 43 residues longer than and 47% homologous to Saccharomyces cerevisiae topo I. We show that the topl (null) strain made by gene disruption is viable, although its generation time is 20% longer than that of wild type. The topl locus is mapped in the long arm of chromosome II, using the Leu+ marker integrated with the cloned topl+ sequence. We constructed a double mutant topl (null) top2 (ts) and found its defective phenotype similar to that of previously obtained topl (heat sensitive) top2 (ts). The other double mutant topl (null) top2 (cs), however, was lethal. Our results suggest that topl+ gene of S. pombe is dispensable only if topo II activity is abundant.  相似文献   

2.
In eukaryotes, the segregation of chromosomes is co-ordinated by the centromere and must proceed accurately if aneuploidy and cell death are to be avoided. The fission yeast centromere is complex, containing highly repetitive regions of DNA showing the characteristics of heterochromatin. Two proteins, Swi6p and Clr4p, that are associated with the fission yeast centromere also contain a chromo (chromatin organisation modifier) domain and are required for centromere function. We have analysed a novel fission yeast gene encoding a putative chromo domain called chp 1(+) (chromo domain protein in Schizosaccharomyces p ombe ). In the absence of Chp1p protein, cells are viable but show chromosome segregation defects such as lagging chromosomes on the spindle during anaphase and high rates of minichromosome loss, phenotypes which are also displayed by swi 6 and clr 4. A fusion protein between green fluorescent protein (GFP) and Chp1p, like Swi6p, is localized to discrete sites within the nucleus. In contrast to Swi6p and Clr4p, Chp1p is not required to repress silent mating-type genes. We demonstrate a genetic interaction between chp 1(+) and alpha-tubulin ( nda 2(+)) and between swi 6(+) and beta-tubulin ( nda 3(+)). Chp1p and Swi6p proteins may be components of the kinetochore which captures and stabilizes the microtubules of the spindle.  相似文献   

3.
DNA topoisomerase II (topo II) is involved in chromosome structure and function, although its exact location and role in mitosis are somewhat controversial. This is due in part to the varied reports of its localization on mitotic chromosomes, which has been described at different times as uniformly distributed, axial on the chromosome arms and predominantly centromeric. These disparate results are probably due to several factors, including use of different preparation and fixation techniques, species differences and changes in distribution during the cell cycle. Recently, several papers have re-investigated the distribution of topo II on chromosomes as a function of cell cycle and species(1–3). The new studies suggest that Topo II has a dynamic pattern of distribution on the chromosomes, in general becoming axial as chromosomes condense during prophase and then concentrating at centromeres during metaphase. These experiments suggest a novel role for topo II in centromere structure and function.  相似文献   

4.
Here we report that DNA decatenation is not a physical requirement for the formation of mammalian chromosomes containing a two-armed chromosome scaffold. 2-aminopurine override of G2 arrest imposed by VM-26 or ICRF-193, which inhibit topoisomerase II (topo II)–dependent DNA decatenation, results in the activation of p34cdc2 kinase and entry into mitosis. After override of a VM-26–dependent checkpoint, morphologically normal compact chromosomes form with paired axial cores containing topo II and ScII. Despite its capacity to form chromosomes of normal appearance, the chromatin remains covalently complexed with topo II at continuous levels during G2 arrest with VM-26. Override of an ICRF-193 block, which inhibits topo II–dependent decatenation at an earlier step than VM-26, also generates chromosomes with two distinct, but elongated, parallel arms containing topo II and ScII. These data demonstrate that DNA decatenation is required to pass a G2 checkpoint, but not to restructure chromatin for chromosome formation. We propose that the chromosome core structure is templated during interphase, before DNA decatenation, and that condensation of the two-armed chromosome scaffold can therefore occur independently of the formation of two intact and separate DNA helices.  相似文献   

5.
The condensin complex and topoisomerase II (topo II) have different biochemical activities in vitro, and both are required for mitotic chromosome condensation. We have used Xenopus egg extracts to investigate the functional interplay between condensin and topo II in chromosome condensation. When unreplicated chromatin is directly converted into chromosomes with single chromatids, the two proteins must function together, although they are independently targeted to chromosomes. In contrast, the requirement for topo II is temporarily separable from that of condensin when chromosome assembly is induced after DNA replication. This experimental setting allows us to find that, in the absence of condensin, topo II becomes enriched in an axial structure within uncondensed chromatin. Subsequent addition of condensin converts this structure into mitotic chromosomes in an ATP hydrolysis-dependent manner. Strikingly, preventing DNA replication by the addition of geminin or aphidicolin disturbs the formation of topo II-containing axes and alters the binding property of topo II with chromatin. Our results suggest that topo II plays an important role in an early stage of chromosome condensation, and that this function of topo II is tightly coupled with prior DNA replication.  相似文献   

6.
《The Journal of cell biology》1994,126(6):1341-1351
ICRF-193, a novel noncleavable, complex-stabilizing type topoisomerase (topo) II inhibitor, has been shown to target topo II in mammalian cells (Ishida, R., T. Miki, T. Narita, R. Yui, S. Sato, K. R. Utsumi, K. Tanabe, and T. Andoh. 1991. Cancer Res. 51:4909-4916). With the aim of elucidating the roles of topo II in mammalian cells, we examined the effects of ICRF-193 on the transition through the S phase, when the genome is replicated, and through the M phase, when the replicated genome is condensed and segregated. Replication of the genome did not appear to be affected by the drug because the scheduled synthesis of DNA and activation of cdc2 kinase followed by increase in mitotic index occurred normally, while VP-16, a cleavable, complex-stabilizing type topo II inhibitor, inhibited all these processes. In the M phase, however, late stages of chromosome condensation and segregation were clearly blocked by ICRF-193. Inhibition at the stage of compaction of 300-nm diameter chromatin fibers to 600-nm diameter chromatids was demonstrated using the drug during premature chromosome condensation (PCC) induced in tsBN2 baby hamster kidney cells in early S and G2 phases. In spite of interference with M phase chromosome dynamics, other mitotic events such as activation of cdc2 kinase, spindle apparatus reorganization and disassembly and reassembly of nuclear envelopes occurred, and the cells traversed an unusual M phase termed "absence of chromosome segregation" (ACS)-M phase. Cells then continued through further cell cycle rounds, becoming polyploid and losing viability. This effect of ICRF-193 on the cell cycle was shown to parallel that of inactivation of topo II on the cell cycle of the ts top2 mutant yeast. The results strongly suggest that the essential roles of topo II are confined to the M phase, when the enzyme decatenates intertwined replicated chromosomes. In other phases of the cycle, including the S phase, topo II may thus play a complementary role with topo I in controlling the torsional strain accumulated in various genetic processes.  相似文献   

7.
An interference assay has been devised in Schizosaccharomyces pombe to rapidly identify and clone genes involved in chromosome segregation. Random S.pombe cDNAs were overexpressed from an inducible promoter in a strain carrying an additional, non-essential minichromosome. Overexpression of cDNAs derived from four genes, two known (nda3+and ubc4+, encoding beta-tubulin and a ubiquitin conjugating enzyme, respectively) and two unknown, named mlo2+ and mlo3+ (missegregation & lethal when over expressed) caused phenotypes consistent with a failure to segregate chromosomes. Full overexpression of all four cDNAs was lethal. Cells overexpressing nda3+ and ubc4+ cDNAs arrested with condensed unsegregated chromosomes and cells overexpressing mlo2+ displayed an asymmetric distribution of nuclear chromatin. Sublethal levels of overexpression of nda3+, ubc4+ and mlo2+ cDNAs caused elevated rates of minichromosome loss. A third cDNA mlo3+, displayed no increase in the frequency of minichromosome loss at sublethal levels of overexpression but full overexpression caused a complete failure to segregate chromosomes. Our results confirm the assumption that beta-tubulin overexpression is lethal in S.pombe, implicate ubc4+ in the control of metaphase-anaphase transition in fission yeast and finally identify two new genes, mlo2+and mlo3+, likely to play an important role for chromosome transmission fidelity in mitosis.  相似文献   

8.
We have investigated the role of topoisomerase II (topo II) in mitotic chromosome assembly and organization in vitro using Xenopus egg extracts. When sperm chromatin was incubated with mitotic extracts, the highly compact chromatin rapidly swelled and concomitantly underwent local condensation. Further incubation induced the formation of entangled thin chromatin fibers that eventually resolved into highly condensed individual chromosomes. This in vitro system made it possible to manipulate mitotic chromosomes in their assembly condition without any isolation or stabilization steps. Two complementary approaches, immunodepletion and antibody blocking, demonstrated that topo II activity is required for chromosome assembly and condensation. Once condensation was completed, however, blocking of topo II activity had little effect on the chromosome morphology. Immunofluorescent studies showed that topo II was uniformly distributed throughout the condensed chromosomes and was not restricted to the chromosomal axis. Surprisingly, all detectable topo II molecules were easily extracted from the chromosomes under mild conditions where the shape of chromosomes was well preserved. Our results show that topo II is essential for mitotic chromosome assembly, but does not play a scaffolding role in the structural maintenance of chromosomes assembled in vitro. We also present evidence that changes of DNA topology affect the distribution of topo II in mitotic chromosomes in our system.  相似文献   

9.
DNA topoisomerase II (topo II) is an essential determinant of chromosome structure and function, acting to resolve topological problems inherent in recombining, transcribing, replicating and segregating DNA. In particular, the unique decatenating activity of topo II is required for sister chromatids to disjoin and separate in mitosis. Topo II exhibits a dynamic localization pattern on mitotic chromosomes, accumulating at centromeres and axial chromosome cores prior to anaphase. In organisms ranging from yeast to humans, a fraction of topo II is targeted for SUMO conjugation in mitotic cells, and here we review our current understanding of the significance of this modification. As we shall see, an emerging consensus is that in metazoans SUMO modification is required for topo II to accumulate at centromeres, and that in the absence of this regulation there is an elevated frequency of chromosome non-disjunction, segregation errors, and aneuploidy. The underlying molecular mechanisms for how SUMO controls topo II are as yet unclear. In closing, however, we will evaluate two possible interpretations: one in which SUMO promotes enzyme turnover, and a second in which SUMO acts as a localization tag for topo II chromosome trafficking.  相似文献   

10.
Thirteen recessive cold sensitive nuclear division arrest mutants were isolated from the fission yeast Schizosaccharomyces pombe. Twelve unlinked genes were defined; six in chromosome I, three in chromosome II and two in chromosome III. The map positions of three nuclear division arrest genes (nda1, nda2 and nda3) in chromosome II were determined precisely. Together with the previously obtained temperature-sensitive cell division cycle mutations, at least 20 genes appear to control the nuclear division of the fission yeast. Physiological studies indicated that most cold sensitive nda mutants incubated previously at 22 degrees C proceeded with a synchronously normal cell-cycle after temperature shift-up. The morphology of the nuclei and nuclear chromatin region was studied by the 4',6-diamidino-2-phenylindole staining method and by electron microscopy. Each mutant exhibited characteristic nuclear morphology at 22 degrees C, showing the specific blockages. The nda genes seem to control a pathway of structural alterations in the nuclear chromatin region with the order hemisphere, condensed ellipsoid, segregating U-form and separating hemispheres. Two genes, nda2 and nda3, pleiotropically control nuclear division, nuclear location and cell shape. The terminal phenotype of nda2-KM52 is characterized by the nuclear displacement, the absence of a spindle and abnormal locations of spindle pole bodies. The cells of nda3-KM311 were aberrant in shape and contained a partially separated chromatin region with a long spindle. Together with the results of the accompanying paper, we conclude that nda2 and nda3 genes control nuclear and cytoplasmic microtubular organization.  相似文献   

11.
We have analyzed the topological organization of chromatin inside mitotic chromosomes. We show that mitotic chromatin is heavily self-entangled through experiments in which topoisomerase (topo) II is observed to reduce mitotic chromosome elastic stiffness. Single chromosomes were relaxed by 35% by exogenously added topo II in a manner that depends on hydrolysable adenosine triphosphate (ATP), whereas an inactive topo II cleavage mutant did not change chromosome stiffness. Moreover, experiments using type I topos produced much smaller relaxation effects than topo II, indicating that chromosome relaxation by topo II is caused by decatenation and/or unknotting of double-stranded DNA. In further experiments in which chromosomes are first exposed to protease to partially release protein constraints on chromatin, ATP alone relaxes mitotic chromosomes. The topo II–specific inhibitor ICRF-187 blocks this effect, indicating that it is caused by endogenous topo II bound to the chromosome. Our experiments show that DNA entanglements act in concert with protein-mediated compaction to fold chromatin into mitotic chromosomes.  相似文献   

12.
To allow chromosome segregation, topoisomerase II (topo II) must resolve sister chromatid intertwines (SCI) formed during deoxynucleic acid (DNA) replication. How this process extends to the full genome is not well understood. In budding yeast, the unique structure of the ribosomal DNA (rDNA) array is thought to cause late SCI resolution of this genomic region during anaphase. In this paper, we show that chromosome length, and not the presence of rDNA repeats, is the critical feature determining the time of topo II–dependent segregation. Segregation of chromosomes lacking rDNA also requires the function of topo II in anaphase, and increasing chromosome length aggravates missegregation in topo II mutant cells. Furthermore, anaphase Stu2-dependent microtubule dynamics are critical for separation of long chromosomes. Finally, defects caused by topo II or Stu2 impairment depend on attachment of telomeres to the nuclear envelope. We propose that topological constraints imposed by chromosome length and perinuclear attachment determine the amount of SCI that topo II and dynamic microtubules resolve during anaphase.  相似文献   

13.
We isolated novel classes of Schizosaccharomyces pombe cold-sensitive dis mutants that block mitotic chromosome separation (nine mapped in the dis1 gene and one each in the dis2 and dis3 genes). Defective phenotype at restrictive temperature is similar among the mutants; the chromosomes condense and anomalously move to the cell ends in the absence of their disjoining so that they are unequally distributed at the two cell ends. Synchronous culture analyses indicate that the cells can enter into mitosis at normal timing but become lethal during mitosis. In comparison with the wild-type mitosis, defects are found in the early spindle structure, the mitotic chromosome structure, the poleward chromosome movement by the spindle elongation and the telophase spindle degradation. The dis mutants lose at permissive temperature an artificial minichromosome at higher rates than occur in the wild type. We found that all the dis mutants isolated are supersensitive to caffeine at permissive temperature. Furthermore, the mutant cells in the presence of caffeine produce a phenotype similar to that obtained at restrictive temperature. We suggest that the dis genes are required for the sister chromatid separation at the time of mitosis and that caffeine might affect the dis gene expression. We cloned, in addition to the dis2+ and dis3+ genes, multicopy extragenic suppressor sequences which complement dis1 and dis2 mutations. A complex regulatory system may exist for the execution of the dis+ gene functions.  相似文献   

14.
Cohesin maintains sister chromatid cohesion until its Rad21/Scc1/Mcd1 is cleaved by separase during anaphase. DNA topoisomerase II (topo II) maintains the proper topology of chromatid DNAs and is essential for chromosome segregation. Here we report direct observations of mitotic progression in individual HeLa cells after functional disruptions of hRad21, NIPBL, a loading factor for hRad21, and topo II alpha,beta by RNAi and a topo II inhibitor, ICRF-193. Mitosis is delayed in a Mad2-dependent manner after disruption of either or both cohesin and topo II. In hRad21 depletion, interphase pericentric architecture becomes aberrant, and anaphase is virtually permanently delayed as preseparated chromosomes are misaligned on the metaphase spindle. Topo II disruption perturbs centromere organization leading to intense Bub1, but no Mad2, on kinetochores and sustains a Mad2-dependent delay in anaphase onset with persisting securin. Thus topo II impinges upon centromere/kinetochore function. Disruption of topo II by RNAi or ICRF-193 overrides the mitotic delay induced by cohesin depletion: sister centromeres are aligned and anaphase spindle movements occur. The ensuing accumulation of catenations in preseparated sister chromatids may overcome the reduced tension arising from cohesin depletion, causing the override. Cohesin and topo II have distinct, yet coordinated functions in metaphase alignment.  相似文献   

15.
The machinery mediating chromosome condensation is poorly understood. To begin to dissect the in vivo function(s) of individual components, we monitored mitotic chromosome structure in mutants of condensin, cohesin, histone H3, and topoisomerase II (topo II). In budding yeast, both condensation establishment and maintenance require all of the condensin subunits, but not topo II activity or phospho-histone H3. Structural maintenance of chromosome (SMC) protein 2, as well as each of the three non-SMC proteins (Ycg1p, Ycs4p, and Brn1p), was required for chromatin binding of the condensin complex in vivo. Using reversible condensin alleles, we show that chromosome condensation does not involve an irreversible modification of condensin or chromosomes. Finally, we provide the first evidence of a mechanistic link between condensin and cohesin function. A model discussing the functional interplay between cohesin and condensin is presented.  相似文献   

16.
Precise chromosome transmission in cell division cycle is maintained by a number of genes. The attempt made in the present study was to isolate temperature-sensitive (ts) fission yeast mutants that display high loss rates of minichromosomes at permissive or semipermissive temperature (designated mis). By colony color assay of 539 ts strains that contain a minichromosome, we have identified 12 genetic loci (mis1-mis12) and determined their phenotypes at restrictive temperature. Seven of them are related to cell cycle block phenotype at restrictive temperature, three of them in mitosis. Unequal distribution of regular chromosomes in the daughters is extensive in mis6 and mis12. Cells become inviable after rounds of cell division due to missegregation. The phenotype of mis5 is DNA replication defect and hypersensitivity to UV ray and hydroxyurea. mis5+ encodes a novel member of the ubiquitous MCM family required for the onset of replication. The mis5+ gene is essential for viability and functionally distinct from other previously identified members in fission yeast, cdc21+, nda1+, and nda4+. The mis11 mutant phenotype was the cell division block with reduced cell size. Progression of the G1 and G2 phases is blocked in mis11. The cloned mis11+ gene is identical to prp2+, which is essential for RNA splicing and similar to a mammalian splicing factor U2AF65.  相似文献   

17.
The fission yeast top2 locus is defined by five temperature-sensitive mutations that cause heat-labile activity of type II DNA topoisomerase in the cell extracts. We show that the top2 locus is a structural gene for type II topoisomerase by cloning a genomic DNA fragment that complements top2. The top2 mutants at restrictive temperature produce abnormal chromosomes at the time of mitosis; these are transiently extended into filamentous structures along with the elongating mitotic spindle but are not separated. A primary defect in top2 appears to be the formation of aberrant mitotic chromosomes inseparable by the force generated by the spindle apparatus. Consistently, the top2 cells that become lethal during mitosis contain a catenated dimer of an ARS plasmid. DNA and RNA continue to be synthesized if cytokinesis is blocked. Uncoordinated mitosis, that is the occurrence of spindle dynamics without chromosome separation, is revealed in top2, and is discussed in relation to mitotic regulation. Different phenotypes between top2 and top1-top2 described in the present paper can be explained by a previously proposed hypothesis that type II topoisomerase has dual in vivo functions: one that decatenates and unknots duplex DNAs is essential in mitosis, whereas the other which relaxes supercoils is required throughout the cell cycle if type I topoisomerase is absent.  相似文献   

18.
The chromosomal condensin complex gives metaphase chromosomes structural stability. In addition, condensin is required for sister-chromatid resolution during their segregation in anaphase [1-7]. How condensin promotes chromosome resolution is poorly understood. Chromosome segregation during anaphase also fails after inactivation of topoisomerase II (topo II), the enzyme that removes catenation between sister chromatids left behind after completion of DNA replication [8, 9]. This has led to the proposal that condensin promotes DNA decatenation [3, 10, 11], but direct evidence for this is missing and alternative roles for condensin in chromosome resolution have been suggested [12-14]. Using the budding-yeast rDNA as a model, we now show that anaphase bridges in a condensin mutant are resolved by ectopic expression of a foreign (Chlorella virus) but not endogenous topo II. This suggests that catenation prevents sister-rDNA segregation but that yeast topo II is ineffective in decatenating the locus without condensin. Condensin and topo II colocalize along both rDNA and euchromatin, consistent with coordination of their activities. We investigate the physiological consequences of condensin-dependent rDNA decatenation and find that late decatenation determines the late segregation timing of this locus during anaphase. Regulation of decatenation therefore provides a means to fine tune the segregation timing of chromosomes in mitosis.  相似文献   

19.
As proliferating cells transit from interphase into M-phase, chromatin undergoes extensive reorganization, and topoisomerase (topo) IIα, the major isoform of this enzyme present in cycling vertebrate cells, plays a key role in this process. In this study, a human cell line conditional null mutant for topo IIα and a derivative expressing an auxin-inducible degron (AID)-tagged version of the protein have been used to distinguish real mitotic chromosome functions of topo IIα from its more general role in DNA metabolism and to investigate whether topo IIβ makes any contribution to mitotic chromosome formation. We show that topo IIβ does contribute, with endogenous levels being sufficient for the initial stages of axial shortening. However, a significant effect of topo IIα depletion, seen with or without the co-depletion of topo IIβ, is the failure of chromosomes to hypercompact when delayed in M-phase. This requires much higher levels of topo II protein and is impaired by drugs or mutations that affect enzyme activity. A prolonged delay at the G2/M border results in hyperefficient axial shortening, a process that is topo IIα-dependent. Rapid depletion of topo IIα has allowed us to show that its function during late G2 and M-phase is truly required for shaping mitotic chromosomes.  相似文献   

20.
Chromosome assembly in vitro: topoisomerase II is required for condensation.   总被引:47,自引:0,他引:47  
Y Adachi  M Luke  U K Laemmli 《Cell》1991,64(1):137-148
The role of topoisomerase II (topo II) in chromosome condensation was studied in a mitotic extract derived from Xenopus eggs by specific immunodepletion. HeLa nuclei, which have a high complement of endogenous topo II, are converted to mitotic chromosomes in the topo II-depleted extract equally well as in the control. Chicken erythrocyte nuclei, however, which have a very low content of topo II, do not convert to condensed chromosomes in the depleted extract, although their condensation is normal upon addition of purified topo II. Dosage experiments support the possible notion of a structural involvement of topo II in chromosome condensation. In the topo II-depleted extract the erythrocyte nuclei progress to precondensation chromosomes, which lack the nuclear membrane-lamina complex and consist of a cluster of swollen chromatids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号