首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DNA sequence encodingN-acylamino acid racemase (AAR) was inserted downstream from the T7 promoter in pET3c. The recombinant plasmid was introduced intoEscherichia coli MM194 lysogenized with a bacteriophage having a T7 RNA polymerase gene. The amount of AAR produced by theE. coli transformant was 1100-fold more than that produced byAmycolatopsis sp. TS-1-60, the DNA donor strain. The AAR was purified to homogeneity from the crude extract of theE. coli transformant by two steps: heat treatment and Butyl-Toyopearl column chromatography. Bioreactors for the production of optically active amino acids were constructed with DEAE-Toyopearl-immobilized AAR andd- orl-aminoacylase.d- orl-methionine was continuously produced with a high yield fromN-acetyl-dc-methionine by the bioreactor.  相似文献   

2.
The gene for mandelate racemase (EC 5.1.2.2) from Pseudomonas putida (ATCC 12633) was cloned in Pseudomonas aeruginosa (ATCC 15692). The selection for the cloned gene was based upon the inability of P. aeruginosa to grow on (R)-mandelate as sole carbon source by virtue of the absence of mandelate racemase in its mandelate pathway. Fragments of P. putida DNA obtained by digestion of chromosomal DNA with Sau3A were ligated into the BamHI site of the Gram-negative vector pKT230 and transformed into the P. aeruginosa host. A transformant able to utilize (R)-mandelate as sole carbon source was characterized, and the plasmid was found to contain approximately five kilobase pairs of P. putida DNA. Subcloning of this DNA revealed the position of the gene for the racemase within the cloned DNA from P. putida. The dideoxy-DNA sequencing procedure was used to determine the sequence of the gene and its translated sequence. The amino acid sequence and molecular weight for mandelate racemase deduced from the gene sequence (38 570) are in excellent agreement with amino acid composition and molecular weight data for the polypeptide recently determined with enzyme isolated from P. putida; these recent determinations of the polypeptide molecular weight differ significantly from the originally reported value of 69,500 [Fee, Judith A., Hegeman, G.D., & Kenyon, G.L. (1974) Biochemistry 13,2528], which was used to demonstrate that alpha-phenylglycidate, an active site directed irreversible inhibitor, binds to the enzyme with a stoichiometry of 1:1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Thirty-one different actinomycete strains were used in a genetic screening using PCR and Southern hybridization methods to detect N-acetylamino acid racemases (AAR) in order to obtain enzymes with different properties. Cloning and sequencing of a 2.5 kb EcoRI DNA fragment from Amycolatopsis orientalis subsp. lurida revealed the coding gene of an N-acetylamino acid racemase, which had identities to the aar gene of Amycolatopsis sp. TS-1-60 [Tokuyama and Hatano (1995) Appl Microbiol Biotechnol 42:884-889] of 86% at the level of DNA, and 90% at the level of amino acids. The heterologous overexpression in Escherichia coli resulted in a specific activity of about 0.2 U/mg of this racemase. A two-step purification with heat treatment followed by anion-exchange chromatography led to almost homogeneous enzyme. The optimum pH of the enzyme was 8.0 and it was stable at 50 degrees C for 30 min. The relative molecular mass of the native enzyme and the subunit was calculated to be 300 kDa and 40 kDa by gel filtration and SDS-PAGE, respectively. The isoelectric point (pI) of the AAR was 4.4. It catalyzed the racemization of optically active N-acetylamino acids such as N-acetyl-L- or -D-methionine and N-acetyl-L-phenylalanine. Further characterization of the racemase demonstrated a requirement for divalent metal ions (Co2+, Mn2+, Mg2+) for activity and inhibition by EDTA and p-hydroxymercuribenzoic acid. AAR is sensitive to substrate inhibition at concentrations exceeding 200 mM.  相似文献   

4.
Lin LL  Hsu WH  Hsu WY  Kan SC  Hu HY 《Antonie van Leeuwenhoek》2005,88(3-4):189-197
Two degenerate primers established from the alignment of highly conserved amino acid sequences of bacterial dihydropyrimidinases (DHPs) were used to amplify a 330-bp gene fragment from the genomic DNA of Bacillus sp. TS-23 and the amplified DNA was successfully used as a probe to clone a dhp gene from the strain. The open reading frame of the gene consisted of 1422 bp and was deduced to contain 472 amino acids with a molecular mass of 52 kDa. The deduced amino acid sequence exhibited greater than 45% identity with that of prokaryotic d-hydantoinases and eukaryotic DHPs. Phylogenetic analysis showed that Bacillus sp. TS-23 DHP is grouped together with Bacillus stearothermophilus d-hydantoinase and related to dihydroorotases and allantoinases from various organisms. His6-tagged DHP was over-expressed in Escherichia coli and purified by immobilized metal affinity chromatography to a specific activity of 3.46 U mg−1 protein. The optimal pH and temperature for the purified enzyme were 8.0 and 60 °C, respectively. The half-life of His6-tagged DHP was 25 days at 50 °C. The enzyme activity was stimulated by Co2+ and Mn2+ ions. His6-tagged DHP was most active toward dihydrouracil followed by hydantoin derivatives. The catalytic efficiencies (kcat/Km) of the enzyme for dihydrouracil and hydantoin were 2.58 and 0.61 s−1 mM−1, respectively.  相似文献   

5.
Limited information is available on α-amino-ε-caprolactam (ACL) racemase (ACLR), a pyridoxal 5′-phosphate-dependent enzyme that acts on ACL and α-amino acid amides. In the present study, eight bacterial strains with the ability to racemize α-amino-ε-caprolactam were isolated and one of them was identified as Ensifer sp. strain 23-3. The gene for ACLR from Ensifer sp. 23-3 was cloned and expressed in Escherichia coli. The recombinant ACLR was then purified to homogeneity from the E. coli transformant harboring the ACLR gene from Ensifer sp. 23-3, and its properties were characterized. This enzyme acted not only on ACL but also on α-amino-δ-valerolactam, α-amino-ω-octalactam, α-aminobutyric acid amide, and alanine amide.  相似文献   

6.
Isocitrate dehydrogenase (IDH: EC 1.1.1.42) of Azotobacter vinelandii was purified to an electrophoretically homogeneous state, and a gene (icd) encoding this enzyme was cloned and sequenced. The N-terminal amino acid sequence of the purified enzyme was consistent with that deduced from the nucleotide sequence of the icd gene. The deduced amino acid sequence of this gene showed high identity (62-66%) to those of the other bacterial monomeric IDHs. Expression of the icd gene in Escherichia coli was examined by measuring the enzyme activity and mRNA level. Primer extension analyses revealed that two species of mRNAs with different lengths of 5'-untranslated regions (TS-1 and TS-2) were present, of which the 5'-terminals (TS-1 and TS-2 sites) were cytosines located at 244 bp and 101 bp upstream of translational initiation codon, respectively. Conserved promoter elements were present at -35 and -10 regions from the TS-1 site, whereas no such a common motif was found in the upstream region of the TS-2 site. Deletion of the promoter elements upstream of the TS-1 site resulted in complete loss of IDH activity in the E. coli transformant. When the promoter elements upstream of the TS-1 site were intact, the levels of TS-1 and TS-2 were varied greatly by altering exogenous nutrients for growth. The cells grown in a nutrient-rich medium produced large amounts of TS-1 and had a low level of IDH activity. In a nutrient-poor medium, the cells contained large amounts of TS-2 and high levels of IDH activity.  相似文献   

7.
The gld gene for glucodextranase from Arthrobacter globiformis T-3044 was cloned by using a combination of gene walking and probe methods and expressed on the recombinant plasmid pGD8, which was constructed with pUC118, in Escherichia coli cells. The enzyme gene consisted of a unique open reading frame of 3,153 bp. The comparison of the DNA sequence data with the N-terminal and 6 internal amino acid sequences of the purified enzyme secreted from A. globiformis T-3044 suggested the enzyme was translated from mRNA as a secretory precursor with a signal peptide of 28 amino acids residues. The deduced amino acids sequence of the mature enzyme contained 1,023 residues, resulting in a polypeptide with a molecular mass of 107,475 daltons. The deduced sequence showed about 38% identity to that of the glucoamylase from Clostridium sp. G0005. The glucodextranase activity of transformant harboring pGD8 was about 40 mU/ml at 30 degrees C for a 16-h culture. Although the GDase that was produced from the transformant was shorter than authentic GDase by 2 amino acid residues at the N-terminal end side, its enzymatic properties were almost same as the authentic one. Two kinds of genes, dex1 and dex2, for endo-dextranases from A. globiformis T-3044 were also cloned into Escherichia coli cells. The N-terminal of the purified endo-dextranase from A. globiformis T-3044 agreed with the deduced amino acid sequence, after the 33rd alanine residue, of only the dex1 gene for edo-dextranase. This result suggests that the endo-dextranase is translated from mRNA as a secretory precursor with a signal peptide of 32 amino acids residues. The deduced sequence of endo-dextranase 1 and endo-dextranase 2 showed about 93% and 65% identity with that of known endo-dextranase from Arthrobacter sp. CB-8, respectively.  相似文献   

8.
Mandelate racemase [EC 5.1.2.2] from Pseudomonas putida ATCC 12336 was efficiently immobilized through ionic binding onto DEAE- and TEAE 23-cellulose. The activity of the immobilized enzyme was significantly enhanced as compared to the native protein, i.e., 2.7- and 2.5-fold, respectively. DEAE-cellulose-immobilized mandelate racemase could be efficiently used in repeated batch reactions for the racemization of (R)-mandelic acid under mild conditions.  相似文献   

9.
The distribution of amino acid racemase activities was investigated in the cell-free extracts of various strains of bacteria. Alanine racemase activity was exclusively found in all the strains tested. However, the cell-free extract of Strain 25-3, which has been identified as Pseudomonas striata, possessed the high activity catalyzing the racemization of alanine, α-aminobutyrate, leucine and methionine. The new and sensitive assay method of amino acid racemase with d-amino acid oxidase and 3-methyl-2-benzothiazolone hydrazone hydrochloride was established.

A new amino acid racemase catalyzing the conversion of either d or l enantiomorph of leucine and α-aminobutyrate to the racemates, was partially purified from the cell-free extract of Pseudomonas striata. Both the racemase reactions are suggested to be catalyzed by a single enzyme because of the constant ratio between the activities during the purification, and of their very resemble behavior to pH, temperature and heating the enzyme. Pyridoxal phosphate functions as the coenzyme for this racemase.  相似文献   

10.
A novel enzyme, β-phenylalanine ester hydrolase, useful for chiral resolution of β-phenylalanine and for its β-peptide synthesis was characterized. The enzyme purified from the cell free-extract of Sphingobacterium sp. 238C5 well hydrolyzed β-phenylalanine esters (S)-stereospecifically. Besides β-phenylalanine esters, the enzyme catalyzed the hydrolysis of several α-amino acid esters with l-stereospecificity, while the deduced 369 amino acid sequence of the enzyme exhibited homology to alkaline d-stereospecific peptide hydrolases from Bacillus strains. Escherichia coli transformant expressing the β-phenylalanine ester hydrolase gene exhibited an about 8-fold increase in specific (S)-β-phenylalanine ethyl ester hydrolysis as compared with that of Sphingobacterium sp. 238C5. The E. coli transformant showed (S)-enantiomer specific esterase activity in the reaction with a low concentration (30 mM) of β-phenylalanine ethyl ester, while it showed both esterase and transpeptidase activity in the reaction with a high concentration (170 mM) of β-phenylalanine ethyl ester and produced β-phenylalanyl-β-phenylalanine ethyl ester. This transpeptidase activity was useful for β-phenylalanine β-peptide synthesis.  相似文献   

11.
Pseudomonas sp. A-01, isolated as a strain with chitosan-degrading activity, produced a 28 kDa chitosanase. Following purification of the chitosanase (Cto1) and determination of its N-terminal amino acid sequence, the corresponding gene (cto1) was cloned by a reverse-genetic technique. The gene encoded a protein, composed of 266 amino acids, including a putative signal sequence (1-28), that showed an amino acid sequence similar to known family-46 chitosanases. Cto1 was successfully overproduced and was secreted by a Brevibacillus choshinensis transformant carrying the cto1 gene on expression plasmid vector pNCMO2. The purified recombinant Cto1 protein was stable at pH 5–8 and showed the best chitosan-hydrolyzing activity at pH 5. Replacement of two acidic amino acid residues, Glu23 and Asp41, which correspond to previously identified active centers in Streptomyces sp. N174 chitosanase, with Gln and Asn respectively caused a defect in the hydrolyzing activity of the enzyme.  相似文献   

12.
An alkaline -mannanase was purified to homogeneity from a culture broth of alkaliphilic Bacillus sp. N16-5. The enzyme had optimum activity at pH 9.5 and 70°C. It was composed of a single polypeptide chain with a molecular weight of 55 kDa deduced from SDS-PAGE, and its isoelectric point was around pH 4.3. The enzyme efficiently hydrolyzed galactomannan and glucomannan, producing a series of oligosaccharides and monosaccharides. The -mannanase gene (manA) contained an open reading frame (ORF) of 1,479 bp, encoding a 32-amino acids signal peptide, and a mature protein of 461 amino acids, with a calculated molecular mass of 50,743 Da. Strain N16-5 ManA, deduced from the manA ORF, exhibited relatively high amino acid similarity to the members of the glycosyl hydrolase family 5. The eight conserved active-site amino acids in family 5 glycosyl hydrolase were found in the deduced amino acid sequence of strain N16-5 ManA.  相似文献   

13.
Ketopantoic acid (KPA) reductase catalyzes the stereospecific reduction of ketopantoic acid to d-pantoic acid. Based on the N-terminal amino acid sequence of KPA reductase from Stenotrophomonas maltophilia 845, the KPA reductase gene was cloned from S. maltophilia NBRC14161 and sequenced. This gene contains an open reading frame of 777 bp encoding 258 amino acid residues, and the deduced amino acid sequence showed high similarity to the SDR superfamily proteins. An expression vector, pETSmKPR, containing the full KPA reductase gene was constructed and introduced into Escherichia coli BL21 (DE3) to overexpress the enzyme. Bioreduction of KPA using E. coli transformant cells coexpressing KPA reductase together with cofactor regeneration enzyme gene was also performed. The conversion yield of KPA to d-pantoic acid reached over 88% with a substrate concentration up to 1.17 M.  相似文献   

14.
The gene of an intracellular D(-)-3-hydroxybutyrate oligomer hydrolase (i3HBOH) was cloned and sequenced from a poly(3-hydroxybutyrate) (PHB)-degrading bacterium, Acidovorax sp. strain SA1. The i3HBOH gene has 876 nucleotides corresponding to the deduced sequence of 292 amino acids. In this amino acid sequence, the general lipase box sequence (G-X1-S-X2-G) was found, whose serine residue was determined to the active sites serine by site-directed mutagenesis. An i3HBOH was purified to electrophoretical homogeneity from SA1. The molecular mass of the purified enzyme was estimated to be 32 kDa by SDS-PAGE. The N-terminal amino acid sequence of the purified enzyme corresponded to the deduced N-terminal amino acid sequence in the cloned i3HBOH gene. This is the first cloning and sequencing of an intracellular D(-)-3-hydroxybutyrate oligomer hydrolase gene to date. Received: 19 October 2001 / Accepted: 7 December 2001  相似文献   

15.
We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5′-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on l-cysteic acid and l-cysteine sulfinic acid in addition to d- and l-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. d-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells.  相似文献   

16.
A thermostable glycerol kinase (FGK) was purified 34-fold to homogeneity from Flavobacterium meningosepticum. The molecular masses of the enzyme were 200 kDa by gel filtration and 50 kDa by SDS-PAGE. The Km for glycerol and ATP were 0.088 and 0.030 mM, respectively. The enzyme was stable at 65°C for 10 min and at 37°C for two weeks. The enzyme gene was cloned into Escherichia coli and its complete DNA was sequenced. The FGK gene consists of an open reading frame of 1494-bp encoding a protein of 498 amino acids. The deduced amino acid sequence of the gene had 40-60% similarity to those of glycerol kinases from other origins and the amino acid sequence of the putative active site residue reported for E. coli GK is identical to the corresponding sequence of FGK except for one amino acid residue.  相似文献   

17.
An enzyme catalyzing the ammonia-lyase reaction for the conversion of d-erythro-3-hydroxyaspartate to oxaloacetate was purified from the cell-free extract of a soil-isolated bacterium Pseudomonas sp. N99. The enzyme exhibited ammonia-lyase activity toward l-threo-3-hydroxyaspartate and d-erythro-3-hydroxyaspartate, but not toward other 3-hydroxyaspartate isomers. The deduced amino acid sequence of the enzyme, which belongs to the serine/threonine dehydratase family, shows similarity to the sequence of l-threo-3-hydroxyaspartate ammonia-lyase (EC 4.3.1.16) from Pseudomonas sp. T62 (74%) and Saccharomyces cerevisiae (64%) and serine racemase from Schizosaccharomyces pombe (65%). These results suggest that the enzyme is similar to l-threo-3-hydroxyaspartate ammonia-lyase from Pseudomonas sp. T62, which does not act on d-erythro-3-hydroxyaspartate. We also then used the recombinant enzyme expressed in Escherichia coli to produce optically pure l-erythro-3-hydroxyaspartate and d-threo-3-hydroxyaspartate from the corresponding dl-racemic mixtures. The enzymatic resolution reported here is one of the simplest and the first enzymatic method that can be used for obtaining optically pure l-erythro-3-hydroxyaspartate.  相似文献   

18.
A gene (aman6) encoding endo-1,6-α-D-mannanase, a yeast mannan backbone degrading enzyme from Bacillus circulans was cloned. The putative aman6 was 1767 base pairs long and encoded a mature 1,6-α-D-mannanase protein of 589 amino acids and a signal peptide of 36 amino acids. The purified mature 1,6-α-D-mannanase from the Escherichia coli transformant showed 61-kDa protein, and N-terminal amino acid sequence and other general properties of the recombinant enzyme were identical to those of 1,6-α-D-mannanase from Bacillus circulans TN-31.  相似文献   

19.
Thermostable N-acylamino acid recemase from Amycolatopsis sp. TS-1-60, a rare actinomycete strain selected for its ability to grow on agar plates incubated at 40° C, was purified to homogeneity and characterized. The relative molecular mass (M r) of the native enzyme and the subunit was estimated to be 300 000 and 40 000 on gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis respectively. The isoelectric point (pI) of the enzyme was 4.2. The optimum temperature and pH were 50° C and 7.5 respectively. The enzyme was stable at 55° C for 30 min. The enzyme catalyzed the racemization of optically active N-acylamino acids such as N-acetyl-l-or d-methionine, N-acetyl-l-valine, N-acetyl-l-tyrosine and N-chloroacetyl-l-valine. In addition, the enzyme also catalyzed the recemization of the dipeptide l-alanyl-l-methionine. By contrast, the optically active amino acids, N-alkyl-amino acids and methyl and athyl ester derivatives of N-acetyl-d- and l-methionine were not racemized. The apparent K m values for N-acetyl-l-methionine and N-acetyl-d-methionine were calculated to be 18.5 mM and 11.3 mM respectively. The enzyme activity was markedly enhanced by the addition of divalent metal ions such as Co2+, Mn2+ and Fe2+ and was inhibited by addition of EDTA and P-chloromercuribenzoic acid. The similarity between the NH2-terminal amino acid sequence of the enzyme and that of Streptomyces atratus Y-53 [Tokuyama et al. (1994) Appl Microbiol Biotechnol 40:835–840] was above 80%.  相似文献   

20.
The gene for a new subtilisin from the alkaliphilic Bacillus sp. KSM-LD1 was cloned and sequenced. The open reading frame of the gene encoded a 97 amino-acid prepro-peptide plus a 307 amino-acid mature enzyme that contained a possible catalytic triad of residues, Asp32, His66, and Ser224. The deduced amino acid sequence of the mature enzyme (LD1) showed approximately 65% identity to those of subtilisins SprC and SprD from alkaliphilic Bacillus sp. LG12. The amino acid sequence identities of LD1 to those of previously reported true subtilisins and high-alkaline proteases were below 60%. LD1 was characteristically stable during incubation with surfactants and chemical oxidants. Interestingly, an oxidizable Met residue is located next to the catalytic Ser224 of the enzyme as in the cases of the oxidation-susceptible subtilisins reported to date.Received: 19 November 2002 / Accepted: 19 December 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号