首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimal growth schedule of a plant with two vegetative parts is studied to investigate the balance between shoot and root. An intuitive justification of optimization procedures used in Pontryagin's maximum principle is obtained by defining the marginal values of shoot size, root size, and reproductive activity at various times of the season and deriving their differential equations and terminal conditions. The optimal growth pattern which maximizes the total reproductive activity during the season is composed of the convergence of a plant's shape to a balanced growth path, followed by simultaneous growth of shoot and root (balanced growth), ending with the reproductive growth. Along the balanced growth path, a plant has a root/shoot ratio which maximizes the daily net photosynthesis for a given total biomass. The model also shows a simultaneous stop of shoot and root growth when the reproduction begins, the dependence of root/shoot ratio on age, water and light availability, etc., the convergence of a plant's shape to the balanced growth after pruning or an environmental change.  相似文献   

2.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis  相似文献   

3.
The way interference develops in even-aged monocultures is usuallyjudged from the progression of weight-density curves that thestands exhibit. For whole plant weight-density curves this developmentof interference is unaffected by root:shoot allometric changesin themselves. However, for weight (of a plant part) - densitycurves, e.g. shoot weight - density curves, differing root:shootallometries in populations can change the way in which interferencedevelops. For example, in shoot weight-density curves, increasingthe proportion of total weight which is root increases the areaoccupied by an isolated plant and so decreases the density atwhich interference becomes appreciable. Increasing the proportionof total weight which is shoot, as density increases, increasesthe area occupied by an isolated plant but also decreases therate at which density constrains shoot weight. Interference, allometry, root:shoot ratio, competition  相似文献   

4.
The changes in plant–plant interactions along environmental gradients have been a focus of recent ecological research. It has been suggested that both above‐ and below‐ground competition and their interplay vary along gradients, but few studies have investigated this idea, and in most cases, the role of facilitation has not been considered, despite its importance in high stress environments. Here we used two‐layer ‘zone‐of‐influence’ models to simulate the effects of facilitation, size‐asymmetry of competition, abiotic stress, resource availability and the balance of root–shoot growth on shoot and root interactions and their interplay along an environmental gradient. In the absence of facilitation, shoot and total competition became weaker, while root competition and the interplay between shoot and root competition were unchanged under increasing stress when root competition was completely symmetric. In contrast, shoot, root, total interactions and the interplay between shoot and root interactions were all negative, and they increased with increasing stress when root competition was size‐symmetric. When facilitation was included in the models, net effects of shoot, root, total interactions and the interplay of root–shoot interactions were very different from those without facilitation, and many were positive under highly stressful conditions. The type of stress (non‐resource or resource) did not significantly influence the simulation results. Our study provides an alternative interpretation of the interplay between above‐ and below‐ground plant–plant interactions across an environmental gradient.  相似文献   

5.
Summary In pea cv. Afghanistan a recessive gene sym 6 prevents the full expression of nitrogenase activity in root nodules, induced byRhizobium leguminosarum strain F 13. In contrast, nitrogenase activity is fully expressed in pea cv. Iran. A comparison of the reciprocal hybrids of these two plants showed that the size of the plant was determined by the mother plant (maternal effect). Therefore the shoot weight and the total amount of nitrogen fixed are not suitable as parameters for a genetic analysis. The % nitrogen of the shoot and the specific activity of the nodules per gram of nodules are more reliable, but for practical purposes the specific activity of the nodules expressed per gram of shoot tissue can be used.  相似文献   

6.
Episodic whole plant growth patterns in Ligustrum   总被引:1,自引:0,他引:1  
Episodic growth of Ligustrum japonicum Thunb. plants was determined by measuring total shoot and root fresh weight nondestructively. Episodic growth patterns were apparent in shoot elongation, shoot and root fresh weight as a percent of total fresh weight, shoot and root relative growth rates (RGRs and RGRr) and two-dimensional measurements of the root system. Increases in root growth and initiation of lateral root branching were coincident with changes in percent of total fresh weight in the root and RGRr. The rate of fresh weight gain of roots, shoots and the whole plant increased continuously throughout two experiments and thus episodic growth patterns were not apparent from these values. Alternating episodes of shoot and root growth, which is shown by percent fresh weight allocation and RGR, did not directly correspond to shoot elongation and cessation of elongation. Continuous, nondestructive measurement of total shoot and root growth reveals important changes in growth which may be obscured by other measurement techniques.  相似文献   

7.
低磷胁迫下云南松幼苗的生物量及其分配   总被引:6,自引:0,他引:6  
戴开结  何方  沈有信  邓云  周文君  崔景云   《广西植物》2006,26(2):183-186
对云南松幼苗进行低磷胁迫的实验表明:不同磷处理水平下云南松幼苗的总生物量、茎叶生物量和株高在处理间的差异极为显著;随着培养液磷浓度的降低,云南松幼苗茎叶生物量和总生物量下降,株高降低,侧芽数减少;总生物量与茎叶生物量之间存在极显著的相关关系和线性回归关系,总生物量随培养液磷浓度的降低而下降主要是由茎叶生物量随培养液磷浓度的降低而下降引起的。低磷胁迫下云南松幼苗的根系生物量并没有随培养液磷浓度的降低而明显减少,根系生物量保持在比较高的水平,低磷胁迫下的云南松幼苗主要以降低茎叶生物量为代价来提高根冠比并保持根系生物量在比较高的水平来维持整个生命。实验还表明,在培养液磷浓度0.03125~0.00781mmol·L-1之间或附近,存在着一个云南松幼苗对低磷忍耐的临界值。  相似文献   

8.
有机肥对铅胁迫下小麦生长的影响   总被引:3,自引:0,他引:3  
Qiao SS  Zhang YQ  Yang LW  Pei HB  Sun HS 《应用生态学报》2011,22(4):1094-1100
采用盆栽方法,研究了不同程度铅胁迫条件下施用有机肥对小麦生长的影响.结果表明:无论施肥与否,随着铅胁迫程度的加剧,小麦均表现出株高下降、次生根数减少、总根质量下降、总根长缩短、根系活力和吸收面积降低、根系SOD和POD活性下降、MDA含量增高的趋势,但在不同施肥处理下的下降幅度不同.施用有机肥可以不同程度地缓解铅胁迫对小麦生长的影响,延缓小麦根系衰老,促进根系发育与生长,最终使小麦产量增加,籽粒中的铅含量降低.  相似文献   

9.
The role of arbuscular mycorrhizal (AM) fungi in aquatic and semi-aquatic environments is poorly understood, although they may play a significant role in the establishment and maintenance of wetland plant communities. We tested the hypothesis that AM fungi have little effect on plant response to phosphorus (P) supply in inundated soils as evidenced by an absence of increased plant performance in inoculated (AM+) versus non-inoculated (AM-) Lythrum salicaria plants grown under a range of P availabilities (0-40 mg/l P). We also assessed the relationship between P supply and levels of AM colonization under inundated conditions. The presence of AM fungi had no detectable benefit for any measures of plant performance (total shoot height, shoot dry weight, shoot fresh weight, root fresh weight, total root length or total root surface area). AM+ plants displayed reduced shoot height at 10 mg/l P. Overall, shoot fresh to dry weight ratios were higher in AM+ plants although the biological significance of this was not determined. AM colonization levels were significantly reduced at P concentrations of 5 mg/l and higher. The results support the hypothesis that AM fungi have little effect on plant response to P supply in inundated conditions and suggest that the AM association can become uncoupled at relatively high levels of P supply.  相似文献   

10.
水分胁迫下AM真菌对沙打旺生长和抗旱性的影响   总被引:7,自引:0,他引:7  
郭辉娟  贺学礼 《生态学报》2010,30(21):5933-5940
利用盆栽试验研究了水分胁迫条件下接种AM真菌对优良牧草和固沙植物沙打旺(Astragalus adsurgens Pall.)生长和抗旱性的影响。在土壤相对含水量为70%、50%和30%条件下,分别接种摩西球囊霉(Glomus mosseae)和沙打旺根际土著菌,不接种处理作为对照。结果表明,水分胁迫显著降低了沙打旺植株(无论接种AM真菌与否)的株高、分枝数、地上部干重和地下部干重,并显著提高了土著AM真菌的侵染率,对摩西球囊霉的侵染率无显著影响。接种AM真菌可以促进沙打旺生长和提高植株抗旱性,但促进效应因土壤含水量和菌种不同而存在差异。不同水分条件下,接种AM真菌显著提高了植株菌根侵染率、根系活力、地下部全N含量和叶片CAT活性。土壤相对含水量为30%和50%时,接种株地上部全N、叶片叶绿素、可溶性蛋白、脯氨酸含量和POD活性显著高于未接种株;接种AM真菌显著降低了叶片MDA含量;接种土著AM真菌的植株株高、分枝数、地上部和地下部干重显著高于未接种株。土壤相对含水量为30%时,接种AM真菌显著增加了地上部全P含量和叶片相对含水量;接种摩西球囊霉的植株株高、分枝数、地上部和地下部干重显著高于未接种株。水分胁迫40d,接种AM真菌显著提高了叶片可溶性糖含量。水分胁迫80d,接种株叶片SOD活性显著增加。菌根依赖性随水分胁迫程度增加而提高。沙打旺根际土著菌接种效果优于摩西球囊霉。水分胁迫和AM真菌的交互作用对分枝数、菌根侵染率、叶片SOD、CAT和POD活性、叶绿素、脯氨酸、可溶性蛋白、地上部全N和全P、地下部全N和根系活力有极显著影响,对叶片丙二醛和地下部全P有显著影响。AM真菌促进根系对土壤水分和矿质营养的吸收,改善植物生理代谢活动,从而提高沙打旺抗旱性,促进其生长。试验结果为筛选优良抗旱菌种,充分利用AM真菌资源促进荒漠植物生长和植被恢复提供了依据。  相似文献   

11.
Phenology is central to understanding vegetation response to climate change, as well as vegetation effects on plant resources, but most temporal production data is based on shoots, especially those of trees. In contrast, most production in temperate and colder regions is belowground, and is frequently dominated by grasses. We report root and shoot phenology in 7‐year old monocultures of 10 dominant species (five woody species, five grasses) in southern Canada. Woody shoot production was greatest about 8 weeks before the peak of root production, whereas grass shoot maxima preceded root maxima by 2–4 weeks. Over the growing season, woody root, and grass root and shoot production increased significantly with soil temperature. In contrast, the timing of woody shoot production was not related to soil temperature (r=0.01). The duration of root production was significantly greater than that of shoot production (grasses: 22%, woody species: 54%). Woody species produced cooler and moister soils than grasses, but growth forms did not affect seasonal patterns of soil conditions. Although woody shoots are the current benchmark for phenology studies, the other three components examined here (woody plant roots, grass shoots and roots) differed greatly in peak production time, as well as production duration. These results highlight that shoot and root phenology is not coincident, and further, that major plant growth forms differ in their timing of above‐ and belowground production. Thus, considering total plant phenology instead of only tree shoot phenology should provide a better understanding of ecosystem response to climate change.  相似文献   

12.
Direct plant regeneration, multiple shoot formation and callogenesis were induced from cocoyam shoot tips cultured in vitro. At different stages of culture, phenol content, peroxidase activity and acidic soluble isoperoxidase patterns were analysed in plantlets. Results showed that phenol content of plantlets cultured on auxin-free media decreased with time, while it increased in those cultured on media supplemented with an auxin. Each form of morphogenesis induced with a growth regulator was preceded by an increase in total peroxidase activity. On hormone-free medium, organogenesis occurred (single shoot development and rhizogenesis), but there was no increase in total peroxidase activity. The appearance of isoperoxidase A2 was associated with root initiation, while the disappearance of isoperoxidase A5 and the appearance of isoperoxidase A6 preceded multiple shoot formation. These results indicate that total peroxidase activity was not a proper marker for organogenesis in cocoyam. Each form of morphogenetic differentiation is associated with an alteration of the acidic isoperoxidase pattern. These enzymes can be used as biochemical markers for rooting and multiple shoot initiation in cocoyam.  相似文献   

13.
Interactions between root and shoot competition vary among species   总被引:9,自引:0,他引:9  
James F. Cahill  Jr. 《Oikos》2002,99(1):101-112
Understanding how the competition varies with productivity is essential for differentiating among alternative models of plant community organization. Prior attempts to explain shifts in root and shoot competition along gradients have generally assumed an additive interaction between the two competitive forms, using an experimental design which does not fully separate both above‐ and belowground processes. At the most basic level, few field studies have separated root and shoot competition, and we have limited knowledge about both the relative importance of these processes, and how they interact to affect plant growth in the field. Presented here are findings from a field study in which root and shoot competition were experimentally separated by using root exclusion tubes and neighbor tiebacks in an early successional community. Individuals of four species (Abutilon theophrasti, Amaranthus retroflexus, Rumex crispus, and Plantago lanceolata) were grown at two levels of fertilization with full competition, aboveground competition only, belowground competition only, or neither above‐ nor belowground competition. Competition was measured as competitive response, which is the natural log of the relative biomass of a target plant grown with competition compared to growth without competition. In contrast to predictions from current models of productivity‐competition relationships, but in agreement with other experimental studies, there was no change in the strengths or root, shoot, or total competition with a modest increase in productivity. Despite no effect of fertilization on the strength of competition, the form of interaction between root and shoot competition varied both as a function of species identity and fertilization. For both of the rosette forming species, the combined effects of root and shoot competition were less than predicted assuming no interaction (a “negative interaction”), with one species switching from a negative to an additive interaction with fertilization. The fact that fertilization caused a shift in the root‐shoot interaction, but not in the total strength of root and shoot competition, suggests that the root‐shoot interaction is itself a highly labile variable. If root‐shoot interactions are common in natural systems, then simply measuring the strength of one form of competition in no way provides any information about the overall importance of that competitive form to plant growth.  相似文献   

14.
植物根际促生菌的筛选及其对玉米的促生效应   总被引:6,自引:1,他引:5  
[目的]以不同植物根及根际土壤为研究材料,进行植物根际促生菌(PGPR)的筛选,并探索其植物促生作用机制.[方法]以解磷、固氮、产氨、产IAA和拮抗3种常见病原真菌为筛选标准,测定了初筛菌株的多项促生能力,并通过对这些菌分别单独回接和多菌混接的玉米盆栽试验,测定了其对玉米的促生效应.[结果]从渭南、成阳、安康、商洛和榆林5地分离得到的158株菌中有17株茵具有上述多种植物促生作用的菌株.盆栽试验的测定结果表明:单独接种和多菌混合接种在玉米株高、根长、茎长、茎平均直径和干重方面与对照组相比较都有所增加,尤其是在多个指标上,多菌混合接种所显示出的促生效应均明显优于单菌接种.[结论]所筛选到的具有多种促生能力的菌株,可以为进一步构建植物根际促生菌(PGPR)菌群提供良好的种质资源.  相似文献   

15.
Abstract The partitioning of nitrate assimilation between root and shoot of higher plant species is indicated by the relative proportions of total plant nitrate reductase activity (NRA) in the two plant parts and the relative concentrations of nitrate and reduced N in the xylem sap. These have been collated here from the literature and temperate and tropical species compared. Both the distribution of NRA and xylem sap nitrate: reduced N indicate that the following four generalizations can be made.
  • 1 Temperate, perennial species growing in low external nitrate concentrations (about 1 mol m?3) carry out most of their nitrate assimilation in the root. As external nitrate concentration increases (in the range found in agricultural soils, 1–20 mol m?3), shoot nitrate assimilation becomes increasingly important.
  • 2 Temperate, annual legume species growing in low external nitrate concentrations carry out most of their nitrate assimilation in the root. Shoot nitrate assimilation increases in importance as external nitrate concentration is increased.
  • 3 Temperate, annual non-legume species vary greatly in their partitioning of nitrate assimilation between root and shoot when growing in low external nitrate concentrations. Regardless of the proportion carried out in the root at low external nitrate concentrations, nitrate assimilation in the shoot becomes increasingly important as external nitrate concentration is increased.
  • 4 Tropical and subtropical species, annual and perennial, carry out a substantial proportion of their nitrate assimilation in the shoot when growing in low external nitrate concentrations. The partitioning of nitrate assimilation between root and shoot remains constant as external nitrate concentration increases.
It is proposed that a greater proportion of nitrate assimilation occurs in the shoot when an increase in the rate of nitrate uptake does not induce an increase in NR level in the root. Thus, a greater proportion of the nitrate taken up remains unassimilated and is passed into the xylem. A constant partitioning of nitrate assimilation between root and shoot is achieved by balancing NR levels in the root with rates of nitrate uptake. The advantages and disadvantages of assimilating nitrate in either the root or shoot are discussed in relation to temperate and tropical habitats.  相似文献   

16.
A model is developed that considers the allocation of carbonand nitrogen substrates to a protein compartment in the shoots,shoot structural components, and root biomass. Inclusion ofa shoot-protein compartment allows variation in shoot-specificactivity to be modelled as a function of leaf nitrogen concentration.Allocation to the biomass compartments is controlled by twopartitioning variables that are defined by explicitly usingthe balanced activity hypothesis. The model produces balancedactivity where the shoot-specific activity, as well as rootand shoot biomass, vary in response to the above-ground (lightand CO2) and below-ground (nitrogen) environments. The predictedpatterns of both root: shoot ratio and leaf nitrogen concentrationin response to environmental resource availability are qualitativelyconsistent with general trends observed in plants. Biomass allocation, plant growth, modelling, leaf nitrogen, root: shoot ratio, balanced activity  相似文献   

17.
A meta-analysis of plant responses to dark septate root endophytes   总被引:1,自引:0,他引:1  
? Dark septate endophytes (DSE) frequently colonize roots in the natural environment, but the effects of these fungi on plants are obscure, with previous studies indicating negative, neutral or positive effects on plant performance. ? In order to reach a consensus for how DSE influence plant performance, meta-analyses were performed on data from 18 research articles, in which plants had been inoculated with DSE in sterile substrates. ? Negative effects of DSE on plant performance were not recorded. Positive effects were identified on total, shoot and root biomass, and on shoot nitrogen (N) and phosphorus contents, with increases of 26-103% in these parameters for plants inoculated with DSE, relative to uninoculated controls. Inoculation increased total, shoot and root biomass by 52-138% when plants had not been supplied with additional inorganic N, or when all, or the majority, of N was supplied in organic form. Inoculation with the DSE Phialocephala fortinii was found to increase shoot and root biomass, shoot P concentration and shoot N content by 44-116%, relative to uninoculated controls. ? The analyses here suggest that DSE enhance plant performance under controlled conditions, particularly when all, or the majority, of N is available in organic form.  相似文献   

18.
The aim of this study was to determine the relationship between shoot nitrate concentration, mediated by nitrate supply to roots, and root exudation from Hordeum vulgare. Plants were grown for 14 d in C-free sand microcosms, supplied with nutrient solution containing 2 mM nitrate. After this period, three treatments were applied for a further 14 d: (A) continued supply with 2 mM nitrate (zero boost), (B) supply with 10 mM nitrate (low boost), and (C) supply with 20 mM nitrate (high boost). At the end of the treatment period, a bacterial biosensor (Pseudomonas fluorescens 10586 pUCD607, marked with the lux CDABE genes for bioluminescence) was applied to the microcosms to report on C-substrate availability, as a consequence of root exudation. The nitrate boost treatments significantly affected shoot nitrate concentrations, in the order C>B>A. In treatments receiving a nitrate boost (B, C), increased shoot nitrate concentration was correlated with increased plant biomass, reduced root length, reduced number of root tips, and increased mean root diameter, relative to the no boost treatment (A). Imaging of biosensor bioluminescence (proportional to metabolic activity in response to availability of root exudates) indicated that root exudation increased with decreasing shoot nitrate concentration. Biosensor reporting of root C-flow indicated that exudation was greater from root tip regions than from the whole root, but that specific exudation rates for all sites were unaffected by treatments. Total root exudation across treatments was found to be closely correlated with total root length, indicating that increased root exudation, per unit root biomass, with decreasing nitrate supply was associated with altered root morphology, as a consequence of systemic plant responses to internal N-status.  相似文献   

19.
Jaan Liira  Kristjan Zobel 《Oikos》2000,91(1):109-114
So far, in all studies on the much-discussed hump-backed relationship between plant community productivity and species richness, productivity has been assessed through plant shoot biomass, i.e. it has been ignored that frequently most of the biomass is produced below ground. We revisited the 27 grassland and forest field-layer communities, studied earlier by Zobel and Liira, to sample root biomass, plant total biomass and root/shoot allocation, and learn how the incorporation of below-ground biomass data would affect the shape of the hump-backed relationship. In order to avoid scaling artefacts we estimated richness as the average count of species per 500 plant ramets (absolute richness). We also included relative richness measures. Relative richness was defined as richness per 500 ramets/size of the actual species pool (the set of species present in the community), relative pool size was defined as size of the actual species pool/size of the regional species pool (the set of species available in the region and capable of growing in the given community).
The biomass-absolute richness relationship was humped, irrespective of the biomass measure used, the hump being most obvious when plant total biomass was used as the independent variable. Evidently, the unimodal richness–productivity curve is not a sampling artefact, as suspected by Oksanen. However, relative richness was not related to community biomass (above-ground, below-ground or total). The hump-backed curve is shaped by the sizes of actual species pools in communities, implying that processes which are responsible for small-scale diversity pattern mainly operate on the community level.
Neither absolute nor relative richness were significantly related to root/shoot allocation. The presumably stronger (asymmetric) shoot competition at greater allocation to shoots appears not to suppress small-scale richness. However, there is a significant relationship between relative pool size and root/shoot allocation. Relatively more species from regional species pools are able to enter and persist in communities with more biomass allocated into roots.  相似文献   

20.
We investigated the impact of drought and arbuscular mycorrhizal (AM) fungi on the morphological structure and physiological function of shoots and roots of male and female seedlings of the dioecious plant Populus cathayana Rehder. Pot-grown seedlings were subjected to well watered or water-limiting conditions (drought) and were grown in soil that was either inoculated or not inoculated with the AM fungus Rhizophagus intraradices. No significant differences were found in the infection rates between the two sexes. Drought decreased root and shoot growth, biomass and root morphological characteristics, whereas superoxide radical (O2–) and hydrogen peroxide content, peroxidase (POD) activity, malondialdehyde (MDA) concentration and proline content were significantly enhanced in both sexes. Male plants that formed an AM fungal symbiosis showed a significant increase in shoot and root morphological growth, increased proline content of leaves and roots, and increased POD activity in roots under both watering regimes; however, MDA concentration in the roots decreased. By contrast, AM fungi either had no effect or a slight negative effect on the shoot and root growth of female plants, with lower root biomass, total biomass and root/shoot ration under drought. In females, MDA concentration increased in leaves and roots under both watering regimes, and the proline content and POD activity of roots increased under drought conditions; however, POD activity significantly decreased under well-watered conditions. These findings suggest that AM fungi enhanced the tolerance of male plants to drought by improving shoot and root growth, biomass and the antioxidant system. Further investigation is needed to unravel the complex effects of AM fungi on the growth and antioxidant system of female plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号