首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Summary Mutants of Aspergillus nidulans with temperature sensitive growth on various amides have been isolated. Three of these mutants have a lesion in the amdS gene and their properties indicate that this is the structural gene for the acetamidase enzyme. In addition one of these mutants appears to be temperature sensitive for assembly of enzyme sub-units. The fourth mutant has a lesion in the amdR gene and, while producing a normal enzyme, is temperature sensitive for synthesis of the acetamidase. The properties of these mutants provide support for a model in which amdR codes for a protein which acts positively to activate synthesis of the acetamidase. A discussion of the present knowledge concerning acetamidase regulation is presented.  相似文献   

2.
Summary Aspergillus nidulans uses an acetamidase enzyme to grow on acetamide as a carbon or as a nitrogen source. Acrylamide is a substrate for the enzyme but does not induce its synthesis. Mutants capable of growing on acrylamide as a nitrogen source have been isolated. Two classes of mutant have been found —amdR c mutants on linkage group II andamdT c on linkage group III.amdR c mutants produce high constitutive acetamidase levels. The enzyme is still inducible by amides, but to a lesser extent than wild type, and is still subject to repression by ammonia and by carbon metabolites derived from glucose.amdR c mutants are semi-dominant to the wild type allele in heterozygous, diploids. TheamdT c mutant is not subject to carbon metabolite repression, of the acetamidase. The enzyme is inducible by amides and repressible by ammonia. TheamdT c mutation also results in reduced ability to grow on formamide as a nitrogen source and to lowered levels of a second amidase enzyme.amdT c is semi-dominant in heterozygous diploids.  相似文献   

3.
Acetamide, a nitrogen and carbon source for Chlamydomonas reinhardtii, is hydrolyzed by acetamidase to ammonium and acetate. It also induces urea pathway activities. Fluoroacetamide (F-acetamide) is toxic to wild-type through conversion to F-citrate, a respiratory inhibitor. Resistant mutants were selected on plates of F-acetamide plus urea. When tested on acetamide plates two mutant classes were obtained, acm+ (utilized acetamide as sole N source) and acm-. All acm+ isolates had acetamidase activity and were obligate phototrophs (i.e. dark-diers). Acm- isolates had either normal urea assimilation (ure+) or lacked all urea pathway activities, namely transport, urea carboxylase and allophanate hydrolase (ure-). Inheritance patterns for both types indicated single nuclear gene mutations. The acm- ure+ type presumably resulted from a defective acetamidase gene, and the acm- ure- strains might be regulatory gene mutants. Temperature conditional F-acetamide tolerant mutants were also obtained. Acetamidase extracted from one such strain was more thermolabile than the wild-type enzyme, indicating a mutation in the coding region. The hypothesis that acetamidase is involved in urea assimilation was not supported by the genetic and biochemical evidence.Abbreviations F-acetamide fluoroacetamide - F-acetate fluoroacetate - TAP tris-acetate-phosphate medium - CDB Chlamydomonas dilution buffer - TCA trichloroacetic acid - AH allophanate hydrolase - UC urea carboxylase - PAR photosynthetically active radiation - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

4.
Mycobacterium smegmatis, a rapidly growing non-pathogenic mycobacterium, is currently used as a model organism to study mycobacterial genetics. Acetamidase of M. smegmatis is the highly inducible enzyme of Mycobacteria, which utilizes several amide compounds as sole carbon and nitrogen sources. The acetamidase operon has a complex regulatory mechanism, which involves three regulatory proteins, four promoters, and three operator elements. In our previous study, we showed that over-expression of AmiA leads to a negative regulation of acetamidase by blocking the P2 promoter. In this study, we have identified a new positive regulatory protein, AmiC that interacts with AmiA through protein-protein interaction. Gel mobility shift assay showed that AmiC protein inhibits AmiA from binding to the P2 promoter. Interaction of AmiC with cis-acting elements identified its binding ability to multiple regulatory regions of the operon such as P3, OP3, and P1 promoter/operator. Consequently, the addition of inducer acetamide to AmiC complexe trips the complexes, causing AmiC to appear to be the sensory protein for the amides. Homology modeling and molecular docking studies suggest AmiC as a member of Periplasmic binding proteins, which preferentially bind to the inducers and not to the suppressor. Over-expression of AmiC leads to down-regulation of the negative regulator, amiA, and constitutive up-regulation of acetamidase. Based on these findings, we conclude that AmiC positively regulates the acetamidase operon.  相似文献   

5.
《Microbiological research》2014,169(11):873-880
Regulation of gene expression is one of the mechanisms of virulence in pathogenic organisms. In this context, we would like to understand the gene regulation of acetamidase enzyme of Mycobacterium smegmatis, which is the first reported inducible enzyme in mycobacteria. The acetamidase is highly inducible and the expression of this enzyme is increased 100-fold when the substrate acetamide is added. The acetamidase structural gene (amiE) is found immediately downstream of three predicted open reading frames (ORFs). Three of these genes along with a divergently expressed ORF are predicted to form an operon and involved in the regulation of acetamidase enzyme. Here we report expression, purification and functional characterization of AmiA which is one of these predicted ORFs. Electrophoretic mobility shift assays showed that AmiA binds to the region between the amiA and amiD near the predicted promoter (P2). Over-expression of AmiA significantly lowered the expression of acetamidase compared to the wild type as demonstrated by qRT-PCR and SDS-PAGE. We conclude that AmiA binds near P2 promoter and acts as a repressor in the regulation of acetamidase operon. The described work is a further step forward toward broadening the knowledge on understanding of the complex gene regulatory mechanism of Mycobacterium sp.  相似文献   

6.

Background  

Ribulose-1,5-bisphosphate is the rate-limiting enzyme in photosynthesis. The catalytic large subunit of the green-algal enzyme from Chlamydomonas reinhardtii is ~90% identical to the flowering-plant sequences, although they confer diverse kinetic properties. To identify the regions that may account for species variation in kinetic properties, directed mutagenesis and chloroplast transformation were used to create four amino-acid substitutions in the carboxy terminus of the Chlamydomonas large subunit to mimic the sequence of higher-specificity plant enzymes.  相似文献   

7.

Background  

Usutu virus belongs to the Flaviviridae viral family and constitutes an important pathogen. The viral helicase is an ideal target for inhibitor design, since this enzyme is essential for the survival, proliferation and transmission of the virus.  相似文献   

8.

Background  

Bacillus anthracis is the causative agent of anthrax and a potential bioterrorism threat. Here we report the biochemical and structural characterization of B. anthracis (Ames) alanine racemase (Alr Bax ), an essential enzyme in prokaryotes and a target for antimicrobial drug development. We also compare the native Alr Bax structure to a recently reported structure of the same enzyme obtained through reductive lysine methylation.  相似文献   

9.

Background  

Immobilization of Trigonopsis variabilis D-amino acid oxidase (TvDAO) on solid support is the key to a reasonably stable performance of this enzyme in the industrial process for the conversion of cephalosporin C as well as in other biocatalytic applications.  相似文献   

10.
Summary Growth of Aspergillus nidulans in the presence of methylammonium leads to lowered levels of the enzymes, acetamidase, formamidase, benzamidase, histidase, nitrate reductase and urate oxidase. This phenomenon is not altered in strains that are insensitive to ammonium repression due to a lesion in the gdhA gene. Similarly repression of acetamidase, formamidase and histidase by high concentrations of caesium ion is not affected in these strains. The results indicate that caesium ion and methylammonium may not act as direct analogues of ammonium in repression of enzyme synthesis.  相似文献   

11.

Background  

Isopentenyl diphosphate (IPP), a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP) synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq.  相似文献   

12.

Background  

LuxS is the synthase enzyme of the quorum sensing signal AI-2. In Salmonella Typhimurium, it was previously shown that a luxS deletion mutant is impaired in biofilm formation. However, this phenotype could not be complemented by extracellular addition of quorum sensing signal molecules.  相似文献   

13.

Background  

S. meliloti forms indeterminate nodules on the roots of its host plant alfalfa (Medicago sativa). Bacteroids of indeterminate nodules are terminally differentiated and, unlike their non-terminally differentiated counterparts in determinate nodules, do not accumulate large quantities of Poly-3-hydroxybutyrate (PHB) during symbiosis. PhaZ is in intracellular PHB depolymerase; it represents the first enzyme in the degradative arm of the PHB cycle in S. meliloti and is the only enzyme in this half of the PHB cycle that remains uncharacterized.  相似文献   

14.

Background  

Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) (EC 2.4.2.8) is a central enzyme in the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida cannot synthesize purines de novo and use the salvage pathway to synthesize purine bases, making this an attractive target for antiparasitic drug design.  相似文献   

15.
16.
Summary The acetamidase of Aspergillus nidulans is induced by sources of acetyl CoA, benzoate and benzamide and by -alanine and other -amino acids. The effects of these groups of inducers are approximately additive. The cis-acting control site mutant, amdI9, affects induction by sources of acetyl-CoA specifically. Lesions in the amdR and gatA genes affect induction by -amino acids specifically. Mutations in the amdA gene can lead to elevated acetamidase levels which still respond to the various inducers. The induction controls act independently of repression control by nitrogen metabolites and are not altered by the areA102 mutation. The properties of double mutants with lesions affecting the different control mechanisms also indicate their independence of each other. It is suggested that the acetamidase is subject to complex control by multiple regulatory circuits and that functionally independent control sites adjacent to the structural gene occur.  相似文献   

17.

Background  

Trigonopsis variabilis D -amino acid oxidase (Tv DAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of Tv DAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris Tv DAO whole-cell biocatalyst.  相似文献   

18.

Background  

Enzymatic biodiesel production by transesterification in solvent media has been investigated intensively, but glycerol, as a by-product, could block the immobilized enzyme and excess n-hexane, as a solution aid, would reduce the productivity of the enzyme. Esterification, a solvent-free and no-glycerol-release system for biodiesel production, has been developed, and two-step catalysis of soybean oil, hydrolysis followed by esterification, with Yarrowia lipolytica lipase is reported in this paper.  相似文献   

19.
The Brevibacterium R 312 strain has an amidase with a wide substrate spectrum previously named acetamidase. The study of its activity showed that this enzyme was able to hydrolyze a large number of amides into their corresponding organic acids. The affinity of this enzyme for the substrates varied according to the length of the carbon chain and the spatial crowding of the molecule. The comparison of the specific rates of hydrolysis showed that propionamide was the amide substrate most quickly hydrolyzed.We confirmed the inducible feature of this enzyme and noted that only acetamide and N-methylacetamide were inducers of this enzyme among the compounds tested. Thioacetamide and N-methylpropionamide, both as amide analogues, were shown to inhibit the biosynthesis of acetamidase. Similarly, the organic acids, products of the hydrolysis reaction, showed a strong repression action on the biosynthesis of the enzyme.  相似文献   

20.

Background  

Human serum paraoxonase 1 (PON1) plays a major role in the metabolism of several organophosphorus compounds. The enzyme is encoded by the polymorphic gene PON1, located on chromosome 7q21.3. Aiming to identify genetic variations related to the risk of developing brain tumors, we investigated the putative association between common nonsynonymous PON1 polymorphisms and the risk of developing astrocytoma and meningioma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号