首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T-cell responses to antigens are classified on the basis of the cytokines they produce as either Th1 (IFN-γ, IL-2) or Th2 (IL-4, IL-10), with these Th types being indicative of either cell-mediated or antibody-mediated responses, respectively. Using this classification, T-cell responses in MHC-class-II-restricted autoimmune diseases appear to be predominantly of the Th1 type, based on the presence of high levels of IFN-γ. This simplistic classification has recently been challenged, however, as disease incidence and severity are frequently elevated in animals that have a deficient IFN-γ response. The recent data discussed here indicate that the cytokine circuits involved in the regulation of cell-mediated and humoral immune responses during the development of autoimmune arthritis are more complex than originally proposed; perhaps our characterization of autoimmune responses as strictly Th1 or Th2 is overly simplistic, especially as it pertains to the role of IFN-γ.  相似文献   

2.
3.
Roles of cytokines in the pathogenesis and therapy of type 1 diabetes   总被引:2,自引:0,他引:2  
Type 1 diabetes (T1D) results from autoimmune destruction of the insulin-producing β-cells in the pancreatic islets of Langerhans by autoreactive T helper 1 (Th1) cells characterized by their cytokine secretory products, interleukin-2 (IL-2) and interferon γ (IFNγ). Th1-type cytokines (IL-2 and IFNγ) correlate with T1D, whereas Th2 (IL-4 and IL-10), Th3 (transforming growth factor beta [TGFβ]), and T regulatory cell-type cytokines (IL-10 and TGFβ) correlate with protection from T1D. Paradoxically, however, administrations of Th1-type cytokines (IL-2 and IFNγ) and immunotherapies that induce Th1-type cytokine responses actually prevent T1D, at least in animal models. Therefore, immunotherapies that inhibit IL-2 production/action will block Th1 cell/cytokine-driven effector mechanisms of pancreatic islet β-cell destruction; however, anti-IL-2 therapy will not allow immune tolerance to be established. In contrast, immunotherapies that increase IL-2 production/action may correct an immunodeficiency in IL-2 production that appears to underlie the autoimmunity of T1D, thereby restoring immune tolerance to islet β-cells and prevention of T1D.  相似文献   

4.
Human Th17 cells     
The discovery in mice of a new lineage of CD4+ effector T helper (Th) cells that selectively produce IL-17 has provided exciting new insights into immune regulation, host defence, and the pathogenesis of autoimmune and other chronic inflammatory disorders. This population of CD4+ Th cells, which has been termed 'Th17', indeed plays an apparently critical role in the pathogenesis of some murine models of autoimmunity. Interestingly, murine Th17 cells share a common origin with Foxp3+ T regulatory cells, because both populations are produced in response to transforming growth factor-β, but they develop into Th17 cells only when IL-6 is simultaneously produced. Initial studies in humans have confirmed the existence of Th17 cells, but they have shown that the origin of these cells in humans differs from that in mice, with IL-1β and IL-23 being the major cytokines responsible for their development. Moreover, the presence in the circulation and in various tissues of Th cells that can produce both IL-17 and interferon-γ, as well as the flexibility of human Th17 clones to produce interferon-γ in addition to IL-17 in response to IL-12, suggests that there may be a developmental relationship between Th17 and Th1 cells, at least in humans. Resolving this issue has great implications in tems of establishing the respective pathogenic roles of Th1 and Th17 cells in autoimmune disorders. In contrast, it is unlikely that Th17 cells contribute to the pathogenesis of human allergic IgE-mediated disorders, because IL-4 and IL-25 (a powerful inducer of IL-4) are both potent inhibitors of Th17 cell development.  相似文献   

5.
T-cell responses to antigens are classified on the basis of the cytokines they produce as either Th1 (IFN-gamma, IL-2) or Th2 (IL-4, IL-10), with these Th types being indicative of either cell-mediated or antibody-mediated responses, respectively. Using this classification, T-cell responses in MHC-class-II-restricted autoimmune diseases appear to be predominantly of the Th1 type, based on the presence of high levels of IFN-gamma. This simplistic classification has recently been challenged, however, as disease incidence and severity are frequently elevated in animals that have a deficient IFN-gamma response. The recent data discussed here indicate that the cytokine circuits involved in the regulation of cell-mediated and humoral immune responses during the development of autoimmune arthritis are more complex than originally proposed; perhaps our characterization of autoimmune responses as strictly Th1 or Th2 is overly simplistic, especially as it pertains to the role of IFN-gamma.  相似文献   

6.
 We have isolated a 55 kDa protein from the seed extract of Aeginetia indica L. (AIL), a parasitic plant, by affinity chromatography on an N-hydroxysuccinimide-activated Sepharose High Performance column bound with F3, a monoclonal antibody that neutralizes the cytokine-inducing and anti-tumor effect of AIL. In the present study, we examined this protein (AILb-A) for cytokine induction and anti-tumor effects by animal study, using syngeneic Meth-A tumor-bearing BALB/c mice, in which the Th2 response is genetically dominant. AILb-A administration resulted in markedly increased levels of Th1 cytokines [interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-12 and IL-18] in the sera derived from Meth-A-bearing mice. The in vitro re-stimulation with AILb-A of splenocytes derived from AILb-A-primed mice also selectively induced Th1-type cytokines and antigen-specific killer cell activity. The neutralizing test using cytokine-specific antibodies revealed that AILb-A-induced IL-18 plays a most significant role for IFN-γ- and killer cell-inducing activities. Furthermore, IL-12 and IL-18 induced by AILb-A inhibited specifically IL-10 and IL-4 production, respectively. Finally, we examined the anti-tumor effect of AILb-A in both Meth-A-bearing BALB/c mice and Meth-A-bearing nude mice with BALB/c background. AILb-A exhibited a striking anti-tumor effect in normal BALB/c mice inoculated with Meth-A cells. In athymic nude mice, the anti-tumor effect of AILb-A was relatively weak. These findings strongly suggested that AILb-A is a potent Th1 inducer and may be a useful immunotherapeutic agent for patients with malignant diseases. Received: 27 July 2000 / Accepted: 13 March 2001  相似文献   

7.
In an attempt to elucidate the effects of Sporothrix schenckii infection on the immune response, our laboratory has developed a murine model of disseminated sporotrichosis. Helper T cells can be further subdivided into Th1 and Th2 phenotypes. The differentiation of two subsets of T lymphocytes is driven by IL-12 and IL-4 cytokines, respectively. Th1 cells produce IFN-γ that activate macrophages and promote cell-mediated immunity. In addition, we found low levels of iNOS and NO production in the initial (1st and 2nd weeks) and final (9th and 10th weeks) periods of the infection, in contrast with the period of week 4 to 7 of elevated values. The determination of IFN-γ and IL-12 are in agreement with NO/iNOS detection, showing the presence of cellular immune response throughout the infectious process. However, the production of IL-4 shows an increase in levels after the 5th and 6th weeks suggesting a participation of Th2 response in this period as well. Regarding these results, the study demonstrated that in experimental sporotrichosis infection the cellular immune response participated throughout the period analyzed as a nitric oxide dependent mechanism. In contrast, the presence of Th2 response began in the 5th week, suggesting the participation of humoral immune response in advanced stages of sporotrichosis.  相似文献   

8.
The variability of immune responses modulated by human leukocyte antigen (HLA) genes and secreted cytokines is a significant factor in the development of a protective effect of measles vaccine. We studied the association between type 1 helper T cells (Th1)- and Th2-like cytokine immune responses and HLA class I alleles among 339 schoolchildren who previously received two doses of the measles vaccine. Median values for measles-specific interferon gamma (IFN-γ) and interleukin-4 (IL-4) cytokines were 40.7 pg/ml [interquartile range (IQR) 8.1–176.7] and 9.7 pg/ml (IQR 2.8–24.3), respectively. Class I HLA-A (*0101 and *3101) and HLA-Cw (*0303 and *0501) alleles were significantly associated with measles-virus-induced IFN-γ secretion. HLA-A*3101 and Cw*0303 were associated with a higher median IFN-γ response, while A*0101 and Cw*0501 were associated with lower measles-specific IFN-γ response. We found limited associations between HLA class I gene polymorphisms and Th2-like (IL-4) immune responses after measles vaccination, indicating that HLA class I molecules may have a limited effect on measles-vaccine-induced IL-4 secretion. Understanding the genetic factors that influence variations in cytokine secretion following measles vaccination will provide insight into the factors that influence both cell-mediated and humoral immunity to measles.  相似文献   

9.
T helper type1 (Th1) or type2 (Th2) cells were induced from naive Th cells obtained from ovalbumin-specific T cell receptor (TCR) transgenic mice. Th1 cells producing interferon γ (IFNγ) exhibited stronger antigen-specific cytotoxicity against ovalbumin-(323–339)-peptide-pulsed A20 tumor cells than did Th2 cells. To develop a general method for applying antigen-nonspecific Th1 cells to tumor immunotherapy, we examined the targeting of Th1 cells to tumor cells using a bispecific antibody (bsAb) consisting of anti-(mouse CD3) mAb and anti-(human c-ErbB-2) mAb. When ovalbumin-specific Th1 or Th2 cells were cocultured with c-erbB-2-positive transfectants (CMS7HE), neither type of cell showed significant cytotoxicity or cytokine production in response to tumor cells. However, addition of bsAb resulted in the triggering of both Th1 and Th2 cells. Th1 cells showed higher levels of bsAb-dependent cytotoxicity against CMS7HE tumor cells than did Th2 cells. The targeting of Th1 cells to CMS7HE tumor cells by bsAb also triggered the production of cytokines such as IFNγ, interleukin-2 and tumor necrosis factor α (TNFα). The released TNFα was demonstrated to be a critical cytolytic factor in bsAb-mediated cytotoxicity by Th1 cells. Finally, Th1 cells were demonstrated to show antitumor activity in vivo against human c-erbB-2-positive tumor cells implanted in nude mice. These results suggest that Th1 cells are useful effector cells for the application to adoptive tumor immunotherapy in conjunction with bsAb. Received: 22 April 1999 / Accepted: 2 July 1999  相似文献   

10.
Th17细胞的分化、调节及其主要细胞因子和功能   总被引:1,自引:0,他引:1  
近几年来以分泌白介素17(interleukin 17,IL-17)为特征的辅助性T细胞Th17(T help cell 17,Th17)细胞被认为是有区别于Th1(T help cell 1,Th1)、Th2(T help cell 2,Th2)新型的细胞亚群,它的发现改变了以往人们只将Th细胞分为Th1、Th2的传统分类认识。Th17细胞参与了自身免疫疾病、肿瘤的发生及机体各种炎症的发病机制,其分泌的细胞因子在生物学功能中发挥了极其重要的作用。同时Th17细胞的活化需要各种转化生长因子、IL-6(interleukin 6,IL-6)、IL-23(interleukin 23,IL-23)等细胞因子的参与,活化的Th17细胞同时再进一步的促进各种细胞因子的分泌,以通过分泌IL-17、IL-21(interleukin 21,IL-21)、IL-22(interleukin22,IL-22)、IL-26(interleukin 26,IL-26)、肿瘤坏死因子(tumor necrosis factor,TNF)α等细胞因子导致机体炎症等各种疾病的发生。  相似文献   

11.
Experimental autoimmune uveoretinitis (EAU) is a T cell-mediated autoimmune disease of posterior uvea that closely resembles a human disease. The uveitogenic effector T cell has a Th1-like phenotype [high interferon-gamma (IFN-gamma), low interleukin-4 (IL-4)], and genetic susceptibility to EAU that is associated with an elevated Th1 response. Suppression of CD4+ Th1 cells for the treatment of autoimmune disease is an attractive potential therapeutic approach. Nitric oxide (NO) has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. In this study, we investigated the potential role of NO as an immunoregulator to alter Th1/Th2 cytokine production, as well as to inhibit the interphotoreceptor retinoid binding protein (IRBP)-induced EAU, a CD4+ Th1 cell-mediated autoimmune disease. Injection of IRBP (100 microg) into two footpads resulted in severe EAU. The beginning peak of the disease was days 12 to 15 after immunization. Oral treatment with molsidomine (MSDM), a NO donor, began 24 h before IRBP immunization to the end of the experiments, which resulted in a significant inhibition of the disease by clinical and histopathological criteria. When MSDM was administered until day 21, a complete reduction of incidence and severity of EAU was observed. To investigate the cytokine alterations from Th1 to Th2 cytokines by MSDM, the cytokines were assayed in a culture medium of IRBP-stimulated inguinal lymphocytes. IRBP-immunized rats secreted a high concentration of IFN-gamma and a low concentration of IL-10. In contrast, MSDM treatment enhanced IL-10 secretion and tended to decrease IFN-gamma secretion. In conclusion, we show that the administration of NO suppresses EAU by altering the Th1/Th2 balance of inflammatory immune responses. We suggest that NO may be useful in the therapeutic control of autoimmune uveitis.  相似文献   

12.
Th cells can be subdivided into IFN-gamma-secreting Th1, IL-4/IL-5-secreting Th2, and IL-17-secreting Th17 cells. We have evaluated the capacity of fully differentiated Th1, Th2, and Th17 cells derived from a mouse bearing a transgenic TCR specific for the gastric parietal cell antigen, H(+)K(+)-ATPase, to induce autoimmune gastritis after transfer to immunodeficient recipients. We have also determined the susceptibility of the disease induced by each of the effector T cell types to suppression by polyclonal regulatory T cells (Treg) in vivo. Each type of effector cell induced autoimmune gastritis with distinct histological patterns. Th17 cells induced the most destructive disease with cellular infiltrates composed primarily of eosinophils accompanied by high levels of serum IgE. Polyclonal Treg could suppress the capacity of Th1 cells, could moderately suppress Th2 cells, but could suppress Th17-induced disease only at early time points. The major effect of the Treg was to inhibit the expansion of the effector T cells. However, effector cells isolated from protected animals were not anergic and were fully competent to proliferate and produce effector cytokines ex vivo. The strong inhibitory effect of polyclonal Treg on the capacity of some types of differentiated effector cells to induce disease provides an experimental basis for the clinical use of polyclonal Treg in the treatment of autoimmune disease in humans.  相似文献   

13.
IL-12 family cytokines are important in host immunity. Whereas some members (IL-12, IL-23) play crucial roles in pathogenesis of organ-specific autoimmune diseases by inducing the differentiation of Th1 and Th17 lymphocytes, others (IL-27 and IL-35) suppress inflammatory responses and limit tissue injury induced by these T cell subsets. In this study, we have genetically engineered a novel IL27p28/IL12p40 heterodimeric cytokine (p28/p40) that antagonizes signaling downstream of the gp130 receptor. We investigated whether p28/p40 can be used to ameliorate uveitis, a CNS inflammatory disease. Experimental autoimmune uveitis (EAU) is the mouse model of human uveitis and is mediated by Th1 and Th17 cells. We show here that p28/p40 suppressed EAU by inhibiting the differentiation and inflammatory responses of Th1 and Th17 cells while promoting expansion of IL-10+- and Foxp3+-expressing regulatory T cells. Lymph node cells from mice treated with p28/p40 blocked adoptive transfer of EAU to naïve syngeneic mice by immunopathogenic T cells and suppressive effects of p28/p40 derived in part from antagonizing STAT1 and STAT3 pathways induced by IL-27 and IL-6. Interestingly, IL27p28 also suppressed EAU, but to a lesser extent than p28/p40. The inhibition of uveitogenic lymphocyte proliferation and suppression of EAU by p28/p40 and IL27p28 establish efficacy of single chain and heterodimeric IL-12 family cytokines in treatment of a CNS autoimmune disease. Creation of the biologically active p28/p40 heterodimeric cytokine represents an important proof-of-concept experiment, suggesting that cytokines comprising unique IL-12 α- and β-subunit pairing may exist in nature and may constitute a new class of therapeutic cytokines.  相似文献   

14.
15.
In experimental autoimmune encephalomyelitis, a classical model for multiple sclerosis, the cytokines provide the necessary signals to activate specific T cells for self-antigens. Gangliosides have multiple immunomodulatory activities, decreasing the lymphoproliferative responses and modulating cytokine production. Here, we tested the effects of gangliosides on the switching of Th1 to Th2 cytokine expression, in spleen cells obtained from Lewis rats during the acute phase of EAE, and after recovery from the disease. For this purpose, total RNA from spleen cells was isolated and submitted to RT-PCR to investigate Th1 (IL-2, TNF-alpha, and IFN-gamma) and Th2/Th3 (IL-10 and TGF-beta) cytokine gene expression. Results demonstrate that the group treated with gangliosides displays mild disease, with low expression of IFN-gamma mRNA and high TGF-beta mRNA expression. We conclude that the gangliosides may modulate Th1 cells by the synthesis of cytokines shifting the profile to the Th2/Th3 phenotype.  相似文献   

16.

Background

Th17 cells play an important role in the pathogenesis of many autoimmune diseases, but despite some reports of their antitumor properties, too little is known about their presence and role in cancers. Specifically, knowledge is sparse about the relation of Th17 to lymphoma microenvironments and, more particularly, to the microenvironment of primary intraocular B-cell lymphoma (PIOL), an aggressive lymphoma with a poor prognosis.

Methods and Principal Findings

In this work, we investigated the presence of Th17 cells and their related cytokines in a syngeneic model of PIOL, a subtype of non-Hodgkin lymphoma. The very small number of lymphocytes trafficking in normal eyes, which represent a low background as compared to tumor-bearing eyes, allows us to develop the present model to characterize the different lymphocyte subsets present when a tumor is developing. IL-21 mRNA was expressed concomitantly with IL-17 mRNA in tumor-bearing eyes and intracellular expression of IL-17A and IL-21 in infiltrating CD4+ T lymphocytes. Interestingly, IL-17A production by T cells was negatively correlated with tumor burden. We also showed that IL-21 but not IL-17 inhibits tumor cell proliferation in vitro.

Conclusions

These data demonstrate that IL-17A and IL-21-producing CD4+ T cells, referred as Th17 cells, infiltrate this tumor locally and suggest that Th17-related cytokines may counteract tumor progression via IL-21 production. Thus, Th17 cells or their related cytokines could be considered to be a new therapeutic approach for non-Hodgkin B-cell lymphomas, particularly those with an ocular localization.  相似文献   

17.
Th17细胞在肺部感染免疫中的作用   总被引:3,自引:0,他引:3  
Th17细胞是近年来发现的一种新的效应T细胞亚群,在自身免疫性疾病和感染中发挥重要的作用,其分泌产生几种致炎细胞因子,包括新发现的细胞因子白细胞介素17。Th17产生的细胞因子与Th1、Th2不同并且与其相互对抗。Th17细胞很可能对防御胞外病原菌的感染及自身免疫性疾病产生影响。综述了Th17细胞产生的细胞因子及其在肺部感染免疫中的作用相关方面的进展。  相似文献   

18.
IL-17-producing T cells (Th17) have been identified in mice as a distinct lineage of CD4+ T helper cells. Since their discovery, efforts have been made in characterizing human Th17 cells and the factors involved in their differentiation and in understanding the role these cells play in protective immunity and autoimmune diseases.  相似文献   

19.
Autoimmune diseases are a broad spectrum of disorders involved in the imbalance of T-cell subsets, in which interplay or interaction of Th1, Th17 and Tregs are most important, resulting in prolonged inflammation and subsequent tissue damage. Pathogenic Th1 and Th17 cells can secrete signature proinflammatory cytokines, including interferon (IFN)-γ and IL-17, however Tregs can suppress effector cells and dampen a wide spectrum of immune responses. Melatonin (MLT) can regulate the humoral and cellular immune responses, as well as cell proliferation and immune mediators. Treatment with MLT directly interferes with T cell differentiation, controls the balance between pathogenic and regulatory T cells and regulates inflammatory cytokine release. MLT can promote the differentiation of type 1 regulatory T cells via extracellular signal regulated kinase 1/2 (Erk1/2) and retinoic acid-related orphan receptor-α (ROR-α) and suppress the differentiation of Th17 cells via the inhibition of ROR-γt and ROR-α expression through NFIL3. Moreover, MLT inhibits NF-κB signaling pathway to reduce TNF-α and IL-1β expression, promotes Nrf2 gene and protein expression to reduce oxidative and inflammatory states and regulates Bax and Bcl-2 to reduce apoptosis; all of which alleviate the development of autoimmune diseases. Thus, MLT can serve as a potential new therapeutic target, creating opportunities for the treatment of autoimmune diseases. This review aims to highlight recent advances in the role of MLT in several autoimmune diseases with particular focus given to novel signaling pathways involved in Th17 and Tregs as well as cell proliferation and apoptosis.  相似文献   

20.
Dipeptidylpeptidase IV (CD26) is a multifunctional ectoenzyme involved in T cell activation that has been implicated in autoimmune pathophysiology. Because IL-17-producing CD4(+) T cells (Th17 cells) are important mediators of autoimmune disease, we analyzed the expression of CD26 and its enzymatic function on human Th17 cells. Analysis of CD26 expression on different CD4(+) T helper subsets showed that CD26 expression is highest on CD4(+) T cells producing type 17 cytokines (e.g., IL-22, IL-17, GM-CSF, or TNF) compared with Th1, Th2, and regulatory T cells. Phenotypic analysis revealed that CD26(++)CD4(+) T cells express the type 17 differentiation molecules CD161, CCR6, lL-23R, and retinoic acid-related orphan receptor-γt. Furthermore, sorted CD26(++)CD4(+) T cells contain >90-98% of Th17 cells, indicating that CD26(++) T cells harbor the Th17 lineage. A comparison with CD161 and CCR6 indicated that analysis of CD26 coexpression may improve the phenotypic characterization of Th17 cells. Of note, CD26(++) Th17 cells are enriched in the inflamed tissue of patients with hepatitis and inflammatory bowel disease. Functional analysis in migration assays revealed that CD26 expressed on Th17 cells is enzymatically active. Indeed, CD26 negatively regulates the chemotactic CD4(+) T cell response to the inflammatory chemokines CXCL9-12 that can be restored by pharmacological blockade of the enzymatic center of CD26. In summary, these results strongly suggest that CD26 may contribute to the orchestration of the immune response by Th17 cells in human inflammatory diseases. They also suggest that the phenotypic analysis of Th17 cells may be facilitated by determination of CD26 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号