首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the expression activity of various vectors containing anti-caspase-3 ribozyme cassettesin vivo, and to further study the role of caspas-3 in the apoptotic pathway, we constructed anti-caspase-3 hammerhead ribozyme embedded into the human snRNA U6, and detected the activity of the ribozymein vitro andin vivo. Meanwhile we compared it with the self-cleaving hammerhead ribozymes that we previously studied, and with the general ribozyme, cloned into RNA polymerase II expression systems. The results showed that the three ribozymes, p1.5RZ107, pRZ107 and pU6RZ107 had the correct structure, and that they could cleave caspase-3 mRNA exactly to produce two fragments: 143nt/553nt. p1.5RZ107 has the highest cleavage efficiencyin vitro, almost 80%. However, the U6 chimeric ribozyme, pU6RZ107, has the highest cleavage activityin vivo, almost to 65%, though it has lower cleavage activityin vitro. The cleavage results demonstrated that the pU6RZ107, the U6 chimeric ribozyme, could more efficiently express and downregulate the level of caspase-3in vivo, and the ribozyme could provide an alternative approach to the research into the mechanism of apoptosis and human gene therapy also.  相似文献   

2.
To study the expression activity of various vectors containing anti-caspase-3 ribozyme cassettes in vivo, and to further study the role of caspas-3 in the apoptotic pathway, we constructed anti-caspase-3 hammerhead ribozyme embedded into the human snRNA U6, and detected the activity of the ribozyme in vitro and in vivo. Meanwhile we compared it with the self-cleaving hammerhead ribozymes that we previously studied, and with the general ribozyme, cloned into RNA polymerase II expression systems. The results showed that the three ribozymes, p1.5RZ107, pRZ107 and pU6RZ107 had the correct structure, and that they could cleave cas-pase-3 mRNA exactly to produce two fragments: 143nt/553nt. p1.5RZ107 has the highest cleavage efficiency in vitro, almost 80%. However, the U6 chimeric ribozyme, pU6RZ107, has the highest cleavage activity in vivo, almost to 65%, though it has lower cleavage activity in vitro. The cleavage results demonstrated that the pU6RZ107, the U6 chimeric ribozyme, could more efficiently expre  相似文献   

3.
 借助计算机软件分析 ,设计出能特异性切割HPV11型 6 4 4ntE2mRNA的核酶 (ribozyme) .遵循Symon′s锤头状核酶结构和GUX剪切位点原则 ,靶序列存在 32个这样的剪切位点 .通过计算机软件分析出核酶的最佳剪切位点 ,并对底物及核酶的二级结构进行预测及进行相应基因生物学功能和基因同源性分析 ,筛选出 2个锤头结构核酶 .针对这两位点设计的核酶分别命名为RZ2 777和RZ32 81.计算机分析显示 ,两核酶与底物切点两翼碱基形成锤头状结构 ,切点所在基因序列具有相对松弛的二级结构 ,位于该基因重要生物功能区内 ,是核酶的理想攻击区域 .通过基因库检索 ,在已知人类基因排除了与上述两核酶切点两翼碱基有基因同源性序列的可能性 .将两核酶用于体外剪切实验取得了良好的实验结果 ,认为借助计算机分析可帮助尽快从多个剪切位点选择出最适核酶  相似文献   

4.
利用计算机模拟设计合成了针对 K5 62细胞致癌融合 bcr3/abl2 m RNA的锤头状核酶 .该核酶以融合点附近 UUC为识别切割三联体 ,在核酶的 3′端增加一段 T7噬菌体终止子序列 .用基因克隆结合体外转录的方法 ,肯定了核酶的体外切割活性 .进而将核酶基因克隆到 p CEP4真核细胞高效表达载体上 ,利用脂质体 Lipofectin AMINE介导的转染技术将核酶与核酶基因导入靶细胞 ,从抑制靶细胞 K5 62的增殖与集落形成及引起靶细胞凋亡等方面验证了核酶在细胞水平上对融合基因 bcr3/abl2 m RNA的特异切割作用 ,并观察到了 T7噬菌体终止子序列对核酶切割效率的增强影响 .  相似文献   

5.
借助计算机软件分析,设计出能特异性切割HPV11型644nt型644ntE2mNA的核酶。遵循Symons锤头状核酶结构和GUX剪切位点原则,靶序列存在32个剪切位点,通过计算机软件分析核酶的最佳剪切位点,并对底物及核酶的二级结构进行预测及进行相应基因生物学功能和基因同源性分析,筛选出2个锤头结构核酶。针对这两位点设计的核酶分别命名为RZ277和RZ3281。计算机分析显示,两核酶与底物切点两翼碱基形成锤头状结构,切点所在基因序列具有相对松驰的二级结构,位于该基因重要生物功能区内,是核酶的理想攻击区域,通过基因库检索,在已知人类基因中排除了与上述两核酶切点两翼碱基有基因同源性序列的可能性。并非所有的GUX位点(X:C、U、A)或CUX均可作为核酶的最佳剪切切割反应,为下一步将核酶用于细胞内和体内试验打下基础。  相似文献   

6.
Transforming growth factorβ1 (TGFβ1) is known to be intimately involved in many cellular processes. To explore the mechanism of TGFβ1 in these processes, the non-chimeric hammerhead ribozyme and U1 snRNA chimeric ribozyme against TGFβ1 were designed to down-regulate TGFβ1 expression. The activity of non-chimeric ribozyme and U1 snRNA chimeric ribozyme against TGFβ1 in vitro and in activated hepatic stellate cells (HSCs) was detected. Cleavage reactions of both ribozymes in vitro demonstrated that non-chimeric ribozyme possessed better cleavage activity in vitro than U1 snRNA chimeric ribozyme. The further study showed U1 snRNA chimeric ribozyme inhibited TGFβ1 expression more efficiently than non-chimeric ribozyme in transfected HSC cells. So it indicates that the U1 snRNA chimeric ribozyme provides an alternative approach for the research on the precise mechanism of TGFβ1 in many cellular processes and a potential therapeutic candidate for TGFβ1-related diseases.  相似文献   

7.
Transforming growth factorβ1 (TGFβ1) is known to be intimately involved in many cellular processes. To explore the mechanism of TGFβ1 in these processes, the non-chimeric hammer-head ribozyme and U1 snRNA chimeric ribozyme against TGFβ1 were designed to down-regulate TGFβ1 expression. The activity of non-chimeric ribozyme and U1 snRNA chimeric ribozyme against TGFβ1 in vitro and in activated hepatic stellate cells (HSCs) was detected. Cleavage reactions of both ribozymes in vitro demonstrated that non-chimeric ribozyme possessed better cleavage activity in vitro than U1 snRNA chimeric ribozyme. The further study showed U1 snRNA chimeric ribozyme inhibited TGFβ1 expression more efficiently than non-chimeric ribozyme in transfected HSC cells. So it indicates that the U1 snRNA chimeric ribozyme provides an alternative approach for the research on the precise mechanism of TGFβ1 in many cellular processes and a potential therapeutic candidate for TGFβ1-related diseases.  相似文献   

8.
9.
Abstract

Three ribozymes, a hairpin ribozyme (HR112) and two hammerhead ribozymes (RZ115 and RZ119) containing a 5′C(UUCG)G3′ loop were designed to cleave the U5 region in the long terminal repeat (LTR) of HIV-1 RNA. The t½ values of chemically synthesized substrates mediated by three ribozymes were measured. The transformed CEM cells possessing these three ribozyme-encoding genes were challenged with a HIV-1IIIB strain, and two of these three ribozymes, HR112 and RZ119, were shown to possess strong anti-HIV-1 activity.

  相似文献   

10.
In order to design the best construct for therapeutic hammerhead ribozymes against AML1-MTG8, the t(8;21)-associated fusion mRNA of acute myeloid leukemia, we synthesized DNA/RNA chimeric ribozymes directed to the area adjacent to the fusion point between AML1 and MTG8. Catalytic efficiency and fusion gene specificity of ribozymes were examined by kinetic studies of the cleavage reactions of AML1-MTG8, AML1, and MTG8 RNAs transcribed in vitro. Ribozyme 2 (Rz2) specifically cleaved AML1-MTG8 RNA at three nucleotides downstream of the fusion junction with high efficiency. The highest cleavage efficiency was achieved by Rz4.3, which targeted non-contiguous sequences and cleaved at 19 nucleotides downstream of the fusion junction. Rz4.3 also cleaved MTG8 RNA but the cleavage efficiency was three orders of magnitude lower than that for AML1-MTG8 RNA. Therefore, Rz4.3 and Rz2 are the proper ribozymes for in vivo application to modulate gene expression of the AML1-MTG8.  相似文献   

11.
12.
13.
We have characterized a novel Zn2+-catalyzed cleavage site between nucleotides C3 and U4 in the catalytic core of the hammerhead ribozyme. In contrast to previously described divalent metal-ion-dependent cleavage of RNA, U4 cleavage is only observed in the presence of Zn2+. This new cleavage site has an unusual pH dependence, in that U4 cleavage products are only observed above pH 7.9 and reach a maximum yield at about pH 8.5. These data, together with the fact that no metal ion-binding site is observed in proximity to the U4 cleavage site in either of the crystal structures, point toward a pH-dependent conformational change in the hammerhead ribozyme. We have described previously Zn2+-dependent cleavage between G8 and A9 in the hammerhead ribozyme and have discovered that U4 cleavage occurs only after A9 cleavage. To our knowledge, this is the first example of sequential cleavage events as a possible regulatory mechanism in ribozymes.  相似文献   

14.
把一段取自TMV RNA的靶cDNA序列连接在一个体内表达转录载体内的报道基因CAT起译密码子ATG的下游组成了读码框不改变的CAT融合基因,通过测定载体在大肠杆菌内表达的CAT活力变化,观察了与CAT同时表达的核酶在体内对靶序列的作用。当专一核酶RZ1、RZ1A或RZ1表达时,CAT的酶活力下降了30%,但非专一核酶RZ3的表达并不改变CAT活力。凝胶电泳和引物延伸结果表明CAT活力的下降是由于这些核酶对融合CAT mRNA在5’靶序列区发生了专一切割从而影响了蛋白的合成所致。  相似文献   

15.
Previously, suppression of the S100A4 mRNA by an endogenously expressed ribozyme in osteosarcoma cells was shown to inhibit their metastasis in rats. As a prelude to performing similar studies with exogenous, synthetic ribozymes, we compared a series of hammerhead ribozymes targeted against different sites in the mRNA. The ribozymes differed only in the 7-base flanking sequences complementary to the substrate and were protected against nucleases by chemical modification. Cleavage efficiency varied widely and was not obviously related to the predicted secondary structure of the target RNA. The most active ribozyme of the series was chosen for further optimization. Lengthening its flanking sequences was counterproductive and reduced cleavage even when using excess ribozyme. Using excess substrate (multiple-turnover kinetics), cleavage was fastest with the (6+8) ribozyme having 6 nucleotides (nt) in stem III and 8 nt in stem I. Although these stems strongly influence ribozyme performance, their optimization is still empirical. Faster cleavage was obtained by adding facilitator oligonucleotides to ribozymes with shorter stems of (6+6) and (5+5) nt. Stimulation was particularly strong in the case of the (5+5) ribozyme, which was poorly active by itself. The enhancement caused by different facilitator oligonucleotides paralleled their expected ability to hybridize to RNA as a function of length and chemical modification.  相似文献   

16.
Five short hammerhead ribozymes (Rzs) were constructed and tested, using a range ofin vitro reaction conditions, for catalytic activity against the mRNA encoding the lignin-forming peroxidase (TPX) of tobacco. Although all 5 Rzs were shown to be able to cleave the RNA substrate, percentage cleavage varied with pre-denaturation of Rz and substrate, incubation temperature, length of incubation and ribozyme (Rz)-to-substrate ratio. One Rz with two catalytic units and 60 nucleotides of complementary sequence in 3 regions was shown to most efficiently cleave the substrate under allin vitro conditions tested. This ribozyme cleaved better than the two single ribozymes from which it was made. The superior cleaving ability of this Rz was shown to be due to the accessibility of the chosen target site and to the increased length of the hybridizing arms spanning this accessible region of the RNA.  相似文献   

17.
Abstract

A region of c-myc mRNA was identified which permitted very efficient antisense effects to be achieved in living cells using chimeric methylphosphonate-phosphodiester antisense effectors. Novel inosine—containing ribozymes (which cleave after NCH triplets) were directed to an ACA triplet within this region and delivered into living cells. No ribozyme intracellular activity could be identified. Very low ribozyme function was also observed in in vitro assays using a 1700nt substrate RNA.  相似文献   

18.
Subsequent to the discovery that RNA can have site specific cleavage activity, there has been a great deal of interest in the design and testing of trans-acting catalytic RNAs as both surrogate genetic tools and as therapeutic agents. We have been developing catalytic RNAs or ribozymes with target specificity for HIV-1 RNA and have been exploring chemical synthesis as one method for their production. To this end, we have chemically synthesized and experimentally analyzed chimeric catalysts consisting of DNA in the non-enzymatic portions, and RNA in the enzymatic core of hammerhead type ribozymes. Substitutions of DNA for RNA in the various stems of a hammerhead ribozyme have been analyzed in vitro for kinetic efficiency. One of the chimeric ribozymes used in this study, which harbors 24 bases of DNA capable of base-pairing interactions with an HIV-1 gag target, but maintains RNA in the catalytic center and in stem-loop II, has a sixfold greater kcat value than the all RNA counterpart. This increased activity appears to be the direct result of enhanced product dissociation. Interestingly, a chimeric ribozyme in which stem-loop II (which divides the catalytic core) is comprised of DNA, exhibited a marked reduction in cleavage activity, suggesting that DNA in this region of the ribozyme can impart a negative effect on the catalytic function of the ribozyme. DNA-RNA chimeric ribozymes transfected by cationic liposomes into human T-lymphocytes are more stable than their all-RNA counterparts. Enhanced catalytic turnover and stability in the absence of a significant effect on Km make chimeric ribozymes favorable candidates for therapeutic agents.  相似文献   

19.
Tertiary interacting elements are important features of functional RNA molecules, for example, in all small nucleolytic ribozymes. The recent crystal structure of a tertiary stabilized type I hammerhead ribozyme revealed a conventional Watson-Crick base pair in the catalytic core, formed between nucleotides C3 and G8. We show that any Watson-Crick base pair between these positions retains cleavage competence in two type III ribozymes. In the Arabidopsis thaliana sequence, only moderate differences in cleavage rates are observed for the different base pairs, while the peach latent mosaic viroid (PLMVd) ribozyme exhibits a preference for a pyrimidine at position 3 and a purine at position 8. To understand these differences, we created a series of chimeric ribozymes in which we swapped sequence elements that surround the catalytic core. The kinetic characterization of the resulting ribozymes revealed that the tertiary interacting loop sequences of the PLMVd ribozyme are sufficient to induce the preference for Y3-R8 base pairs in the A. thaliana hammerhead ribozyme. In contrast to this, only when the entire stem-loops I and II of the A. thaliana sequences are grafted on the PLMVd ribozyme is any Watson-Crick base pair similarly tolerated. The data provide evidence for a complex interplay of secondary and tertiary structure elements that lead, mediated by long-range effects, to an individual modulation of the local structure in the catalytic core of different hammerhead ribozymes.  相似文献   

20.
Antisense RNA ribozymes have intrinsic endonucleolytic activity to effect cleavage of the target RNA. However, this activity in vivo is often controlled by the dominance of antisense or other double-stranded RNA mechanism. In this work, we demonstrate the in planta activity of a hammerhead ribozyme designed to target rep-mRNA of a phytopathogen Mungbean Yellow Mosaic India virus (MYMIV) as an antiviral agent. We also found RNA-silencing is induced on introduction of catalytically active as well as inactive ribozymes. Using RNA-silencing suppressors (RSS), we demonstrate that the endonucleolytic activity of ribozymes is a true phenomenon, even while a mutated version may demonstrate a similar down-regulation of the target RNA. This helps to ease the confusion over the action mechanism of ribozymes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号