首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Inhibition of alanyl-aminopeptidase (APN, CD13) gene expression or enzymatic activity compromises T cell proliferation and function. Molecular mechanisms mediating these effects are not known as yet. Recently, we found the expression of the proto-oncogen Wnt-5a to be strongly affected by APN-inhibition. Wnt-5a and other members of the Wnt family of secreted factors are implicated in cell growth and differentiation. Here, we analyzed by quantitative RT-PCR and immunoblotting the expression in mitogen-activated T cells of a major constituent of the Wnt-5a pathway, glycogen synthase kinase-3beta (GSK-3beta). T cell activation by phytohaemagglutinin or pokeweed mitogen results in a strong increase of GSK-3beta mRNA amounts. At the protein level, we observed an up-regulation of both GSK-3beta and phosphorylated GSK-3beta. This induction-dependent increase of GSK-3beta is markedly reduced in response to inhibitors of alanyl-aminopeptidase, actinonin, leuhistin, and RB3014. These findings may provide a rational for the growth inhibition resulting from a diminished expression or activity of alanyl aminopeptidase.  相似文献   

7.
8.
Insulin-like growth factor binding protein (IGFBP)-3 effects proliferation and differentiation of numerous cell types by binding to insulin-like growth factors (IGF) and attenuating their activity or by directly affecting cells in an IGF-independent manner. Consequently, IGFBPs produced by specific cells may affect their differentiation and proliferation. In this study we show that embryonic porcine myogenic cells, unlike murine muscle cell lines, produce significant quantities of a binding protein immunologically identified as IGFBP-3. Nonfusing cells subcultured from highly fused porcine myogenic cell cultures do not produce detectable IGFBP-3 protein or mRNA, thus suggesting the IGFBP-3 is produced by muscle cells in the porcine myogenic cell cultures. Treatment of porcine myogenic cultures with 20 ng of IGF-I or 20 ng of Des (1-3) IGF-I/ml serum-free media for 24 h results in a threefold reduction in the level of IGFBP-3 in conditioned media. This reduction is not affected by cell density over a sixfold range. Additionally, treatment for 24 h with 20 ng of IGF-I/ml media results in a sevenfold decrease in the steady-state level of IGFBP-3 mRNA. This IGF-I-induced decrease in IGFBP-3 mRNA level appears to be relatively unique to myogenic cells. IGF-I treatment also causes a fourfold increase in the steady-state level of myogenin mRNA. This increase in myogenin mRNA suggests that, as expected, IGF-I treatment accelerates differentiation of myogenic cells. The simultaneous decrease in IGFBP-3 mRNA and protein that accompanies IGF-I-induced myogenin expression suggests that differentiation of myogenic cells may be preceded or accompanied by decreased production of IGFBP-3.  相似文献   

9.
Summary— The increase in galectin-3 lectin content observed in tumours or in in vitro transformed cells suggests that this lectin is important in the transformation process. In the present study, we investigated the mRNA expression level of the galectin-3, galectin-I and macrophage mannose receptor in normal and ras-transformed NIH 3T3 cells in relation to their transformation state. The galectin3 mRNA content in ras-transformed cells is increased in fully transformed cells, with a maximum in ras-transformed cells that have lost their growth anchorage-dependence. Under the same conditions, the galectin-1 mRNA level which was high in normal cells, increased slightly in transformed cells. The mRNA for the macrophage mannose receptor was not detected in 3T3 cells or in their ras-transformed counterparts.  相似文献   

10.
11.
12.
The pathogenic mechanisms underlying pituitary somatotroph adenoma formation, progression are poorly understood. To identify candidate tumor suppressor genes involved in pituitary somatotroph adenoma tumorigenesis, we used HG18 CpG plus Promoter Microarray in 27 human somatotroph adenomas and 4 normal human adenohypophyses. RASSF3 was found with frequent methylation of CpG island in its promoter region in somatotroph adenomas but rarely in adenohypophyses. This result was confirmed by pyrosequencing analysis. We also found that RASSF3 mRNA level correlated negatively to its gene promoter methylation level. RASSF3 hypermethylation and downregulation was also observed in rat GH3 and mouse GT1.1 somatotroph adenoma cell lines. 5-Aza-2′ deoxycytidine and trichostatin-A treatment induced RASSF3 promoter demethylation, and restored its expression in GH3 and GT1.1 cell lines. RASSF3 overexpression in GH3 and GT1.1 cells inhibited proliferation, induced apoptosis accompanied by increased Bax, p53, and caspase-3 protein and decreased Bcl-2 protein expression. We also found that the antitumor effect of RASSF3 was p53 dependent, and p53 knockdown blocked RASSF3-induced apoptosis and growth inhibition. Taken together, our results suggest that hypermethylation-induced RASSF3 silencing plays an important role in the tumorigenesis of pituitary somatotroph adenomas.  相似文献   

13.
14.
15.
16.
Beta1,4-galactosyltransferase1 (beta1,4GT1) is localized both in the Golgi complex and on the cell surface. In our previous study, we first reported that beta1,4GT1 was associated with cycloheximide-induced apoptosis in human hepatocarcinoma cells. In this study, we transfected constitutively active protein kinase B (Gag-PKB), a central mediator of anti-apoptotic signals transduced by the PI3-kinase, into SMMC-7721 human hepatocarcinoma cells, and examined its effect on apoptosis and beta1,4GT1 activity. Flow cytometry analysis showed that apoptosis was inhibited in Gag-PKB transfected SMMC-7721 cells. At the same time, beta1,4GT1 mRNA level and enzyme activities were downregulated in these cells, consistent with which, the content of beta1,4 Gal branch in the glycoconjugates was decreased in stably transfected cells. Cotransfection of beta1,4GT1 promoter/luciferase reporter and Gag-PKB decreased the luciferase reporter activity in a dose-dependent manner, indicating that the differences in mRNA levels might be regulated through promoter function. All these findings suggested that changes of beta1,4GT1 activity might be involved in apoptotic pathway in hepatocarcinoma cells.  相似文献   

17.
We investigated the effect of insulin on the expression of the enhancer of split- and hairy-related protein-2 gene in 3T3-L1 adipocytes and L6 myotubes. The level of enhancer of split- and hairy-related protein-2 mRNA was increased by insulin in both cells. While both wortmannin and LY294002 blocked the increase in 3T3-L1 adipocytes, and only PD98059 was effective in L6 myotubes. Although the increase by insulin in these cells was inhibited by treatment with actinomycin D, this was enhanced by treatment with cycloheximide. Furthermore, cyclic AMP increased the level of enhancer of split- and hairy-related protein-2 mRNA in both cells in an additive manner. Thus, we conclude that insulin and cyclic AMP induce the expression of the enhancer of split- and hairy-related protein-2 gene in both 3T3-L1 adipocytes and L6 myotubes, and that the gene expression enhanced by insulin is regulated by the cell type-specific pathway. The former requires a phosphoinositide 3-kinase pathway and the latter a mitogen-activated protein kinase pathway.  相似文献   

18.
19.
Transforming growth factor-beta 1 (TGF-beta 1) is a multifunctional polypeptide that regulates the proliferation and differentiation of various types of animal cells. TGF-beta 1 stimulated glucose uptake and the expression of a brain-type glucose transporter (GLUT1) mRNA in quiescent mouse 3T3 cells. TGF-beta 1 also synergistically stimulated these activities when given together with calf serum, phorbol ester, fibroblast growth factor, or epidermal growth factor. The increases in glucose uptake and the GLUT1 mRNA level were induced by picomolar concentrations of TGF-beta 1 within 3 h of stimulation, reached a peak between 6 and 9 h, and then decreased gradually to basal levels before an increase in DNA synthesis. The stimulation of GLUT1 mRNA expression was completely abolished by actinomycin D, but was not affected by cycloheximide, suggesting that new protein synthesis was not required for the expression of GLUT1 mRNA. TGF-beta 1 had little mitogenic activity and did not affect serum-induced DNA synthesis in quiescent 3T3 cells. However, it stimulated DNA synthesis synergistically when given with fibroblast growth factor, epidermal growth factor, phorbol ester, or insulin. These results suggest that TGF-beta 1 mediates the stimulation of glucose uptake, GLUT1 mRNA expression, and DNA synthesis via a pathway(s) and cellular components distinct from those for other growth factors. The possible role of the TGF-beta 1-induced stimulation of glucose transport activity in the control of mouse fibroblast proliferation is also discussed.  相似文献   

20.
Abstract. Although alterations in the p53 tumour suppressor gene are one of the most frequent genetic lesions occurring in human cancers, the exact function and mechanism of action of normally regulated p53 in the control of cell cycle is unclear. To clanfy further the possible role of this gene in the control of cell proliferation, the cellular level of p53-specific mRNA and its changes during density-dependent growth, and in different proliferation states induced by serum starvation and subsequent serum-stimulation, were followed in WI-38 cells, a normal human diploid fibroblast cell line. Marked differences in the expression of p53 mRNA could be observed in the different proliferation states tested. The pattern of p53 expression proved to be inversely proportional to the growth-rate of the cultures. mRNA was considerably more abundant when cells reached confluency or were arrested by serum deprivation while serum-stimulation caused the opposite effect. These results support the hypothesis that the p53 gene plays a role in G1 control of normal cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号