共查询到20条相似文献,搜索用时 15 毫秒
1.
Wound-inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines 总被引:1,自引:0,他引:1 下载免费PDF全文
The wound-activated biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine was compared in untransformed and transgenic tobacco (Nicotiana tabacum) lines that express tryptophan decarboxylase (TDC), tyrosine decarboxylase (TYDC), or both activities. Transgenic in vitro-grown tobacco lines expressing TDC activity accumulated high levels of tryptamine but not hydroxycinnamic amides of tryptamine. In contrast, transgenic tobacco lines expressing TYDC accumulated tyramine as well as p-coumaroyltyramine and feruloyltyramine. The MeOH-soluble and cell wall fractions showed higher concentrations of wound-inducible p-coumaroyltyramine and feruloyltyramine, especially at and around wound sites, in TYDC and TDC xTYDC tobacco lines compared to wild-type or TDC lines. All the enzymes involved in the biosynthesis of hydroxycinnamic acid amides of tyramine were found to be similarly wound inducible in all tobacco genotypes investigated. These results provide experimental evidence that, under some circumstances, TYDC activity can exert a rate-limiting control over the carbon flux allocated to the biosynthesis of hydroxycinnamic acid amides of tyramine. 相似文献
2.
High levels of tryptamine accumulation in transgenic tobacco expressing tryptophan decarboxylase 总被引:5,自引:0,他引:5 下载免费PDF全文
A full-length complementary DNA clone encoding tryptophan decarboxylase (TDC; EC 4.1.1.28) from Catharanthus roseus (De Luca V, Marineau C, Brisson N [1989] Proc Natl Acad Sci USA 86: 2582-2586) driven by the CaMV 35S promoter was introduced into tobacco (Nicotiana tabacum) to direct the synthesis of the protoalkaloid tryptamine from endogenous tryptophan. Young, fully expanded leaves of CaMV 35S-TDC transformed plants had from four to 45 times greater TDC activity than did controls. Tryptamine accumulated in transgenic plants to levels that were directly proportional to their TDC specific activity. Despite their increased tryptamine content, the growth and development of the CaMV 35S-TDC plants appeared normal with no significant differences in indole-3-acetic acid levels between high tryptamine and control plants. Plants with the highest TDC activity contained more than 1 milligram of tryptamine per gram fresh weight, a 260-fold increase over controls. 相似文献
3.
In plants, the indole pathway provides precursors for a variety of secondary metabolites. In Catharanthus roseus, a decarboxylated derivative of tryptophan, tryptamine, is a building block for the biosynthesis of terpenoid indole alkaloids. Previously, we manipulated the indole pathway by introducing an Arabidopsis feedback-insensitive anthranilate synthase (AS) alpha subunit (trp5) cDNA and C. roseus tryptophan decarboxylase gene (TDC) under the control of a glucocorticoid-inducible promoter into C. roseus hairy roots [Hughes, E.H., Hong, S.-B., Gibson, S.I., Shanks, J.V., San, K.-Y. 2004a. Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol. Bioeng. 86, 718-727; Hughes, E.H., Hong, S.-B., Gibson, S.I., Shanks, J.V., San, K.-Y. 2004b. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabol. Eng. 6, 268-276]. Inducible expression of either or both transgenes did not lead to significant increases in overall alkaloid levels despite the considerable accumulation of tryptophan and tryptamine. In an attempt to more successfully engineer the indole pathway, a wild type Arabidopsis ASbeta subunit (ASB1) cDNA was constitutively expressed along with the inducible expression of trp5 and TDC in C. roseus hairy roots. Transgenic hairy roots expressing both trp5 and ASB1 show a significantly greater resistance to feedback inhibition of AS activity by tryptophan than plants expressing only trp5. In fact, a 4.5-fold higher concentration of tryptophan is required to achieve 50% inhibition of AS activity in plants overexpressing both genes than in plants expressing only trp5. In addition, upon a 3 day induction during the exponential phase, a trp5:ASB1 hairy root line produced 1.8 times more tryptophan (specific yield ca. 3.0 mg g(-1) dry weight) than the trp5 hairy root line. Concurrently, tryptamine levels increase up to 9-fold in the induced trp5:ASB1 line (specific yield ca. 1.9 mg g(-1) dry weight) as compared with only a 4-fold tryptamine increase in the induced trp5 line (specific yield ca. 0.3 mg g(-1) dry weight). However, endogenous TDC activities of both trp5:ASB1 and trp5 lines remain unchanged irrespective of induction. When TDC is ectopically expressed together with trp5 and ASB1, the induced trp5:ASB1:TDC hairy root line accumulates tryptamine up to 14-fold higher than the uninduced line. In parallel with the remarkable accumulation of tryptamine upon induction, alkaloid accumulation levels were significantly changed depending on the duration and dosage of induction. 相似文献
4.
Opium poppy, Papaver somniferum, is cultivated for its alkaloid-rich latex. Tyrosine decarboxylase (TyDC) is the first enzyme in poppy alkaloid biosynthesis and is encoded by a small gene family. A 2,060-bp promoter fragment of TyDC5 was translationally fused to the #-glucuronidase (GUS) reporter gene and introduced into poppy and tobacco (Nicotiana tabacum). Transgenic seedlings were stained for GUS activity which localized to the xylem parenchyma in the shoots of poppy and tobacco. Roots of both species had similar expression patterns with staining in the vascular cylinder surrounding the xylem. No staining was observed in poppy laticifers suggesting that other TyDC genes may be expressed in latex or that alkaloid precursors are supplied to laticifers by adjacent cells. 相似文献
5.
The expression of the Acidothermus cellulolyticus endoglucanase E1 gene in transgenic tobacco (Nicotiana tabacum) was examined in this study, where E1 coding sequence was transcribed under the control of a leaf specific Rubisco small subunit promoter (tomato RbcS-3C). Targeting the E1 protein to the chloroplast was established using a chloroplast transit peptide of Rubisco small subunit protein (tomato RbcS-2A) and confirmed by immunocytochemistry. The E1 produced in transgenic tobacco plants was found to be biologically active, and to accumulate in leaves at levels of up to 1.35% of total soluble protein. Optimum temperature and pH for E1 enzyme activity in leaf extracts were 81°C and 5.25, respectively. E1 activity remained constant on a gram fresh leaf weight basis, but dramatically increased on a total leaf soluble protein basis as leaves aged, or when leaf discs were dehydrated. E1 protein in old leaves, or after 5h dehydration, was partially degraded although E1 activity remained constant. Transgenic plants exhibited normal growth and developmental characteristics with photosynthetic rates similar to those of untransformed SR1 tobacco plants. Results from these biochemical and physiological analyses suggest that the chloroplast is a suitable cellular compartment for accumulation of the hydrolytic E1 enzyme. 相似文献
6.
由于在帕金森病中合成多巴胺所需的酪氨酸羟化酶(tyrosine hydroxylase,TH)和左旋芳香族氨基酸脱羧酶(aromatic L-amino acid decarboxylase,AADC)活性明显降低,所以补充多巴胺合成酶成为基因治疗帕金森病研究的主要手段。我们分别构建了重组逆转录病毒载体pLHCX/TH及pLNCX2/AADC,通过脂质体介导将带有目的基因的载体分别转到包装细胞PA317中,经筛选得到产病毒的细胞PA317/TH和PA317/AADC,采用免疫组化、原位杂交方法检测目的基因表达;细胞经裂解后进行的酶促反应产物多巴胺以高压液相电化学方法检测证明所克隆的T‘H及AADC基因具有功能活性;这两种基因工程改造细胞可以完成酶促动力学的功能,使L-dopa及多巴胺产生明显增加。本研究为用TH和AADC双基因对帕金森病进行基因治疗提供了一定的依据。 相似文献
7.
Explants of tobacco pith taken at various distances from the apex of a mature stem show a sharp gradient in growth potential in vitro; growth is highest in the extreme apical and basal explants, and is minimal in explants removed ca. 75 cm from the apex. Calluses produced by the vigorously growing basal explants are harder and more compact than those produced from more apical explants. The gradient in growth potential is directly correlated with gradients in RNA, protein of cell sap and soluble N per unit fresh weight, but is inversely correlated with peroxidase activity. Cell size increases from apex to base of plants.
The peroxidase activity of pith explants is electrophoretically resolvable into 2 isoperoxidases, moving anodically at pH 9.0. During in vitro culture, this activity rises, due to the formation of several new isozymes moving toward the cathode. The appearance of these isozymes occurs most rapidly in apical and extreme basal explants.
相似文献8.
Arena MP Romano A Capozzi V Beneduce L Ghariani M Grieco F Lucas P Spano G 《Letters in applied microbiology》2011,53(4):395-402
Aims: Lactobacillus brevis IOEB 9809 is able to produce both tyramine and putrescine via tyrosine decarboxylase and agmatine deiminase enzymes, respectively, when cultured on synthetic media. The aims of this study were to assess the expression of L. brevis IOEB 9809 tdc and aguA1 genes, during wine fermentation and to evaluate the effect of substrate availability and pH on tdc and aguA1 expression, as well as on biogenic amine production and L. brevis viability. Methods and Results: The relative expression of L. brevis IOEB 9809 tdc and aguA1 genes was analysed in wine by quantitative real‐time RT‐PCR (qRT‐PCR) during a period of incubation of 30 days. Cell viability, pH values, putrescine and tyramine concentration were monitored throughout the experiments. Conclusions: The wine trials indicated that L. brevis IOEB 9809 is able to produce both tyramine and putrescine during wine fermentation. Increased cell viability was also observed in wine supplemented with tyrosine or agmatine. qRT‐PCR analysis suggests a strong influence of substrate availability on the expression of genes coding for tyrosine decarboxylase and agmatine deiminase in L. brevis IOEB 9809. Less evident is the relationship between putrescine and tyramine production and tolerance to wine pH. Significance and Impact of Study: To our knowledge, this study represents the first assessment of relative expression of L. brevis IOEB 9809 genes involved in biogenic amine production in wine. Furthermore, an effect of biogenic amine production on viability of L. brevis during wine fermentation was established. 相似文献
9.
Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots 总被引:10,自引:0,他引:10
Hao YJ Kitashiba H Honda C Nada K Moriguchi T 《Journal of experimental botany》2005,56(414):1105-1115
10.
11.
Charlotte Poulsen Oscar J. M. Goddijn J. Harry C. Hoge Robert Verpoorte 《Transgenic research》1994,3(1):43-49
TransgenicNicotiana tabacum L. Petit Havana SR1 F1-plants expressing tryptophan decarboxylase cDNA (tdc) fromCatharanthus roseus (L.) G. Don under the control of the CaMV 35S promoter and terminator exhibited tryptophan decarboxylase (TDC) enzyme activity and accumulated tryptamine. The plants with the highest TDC activity contained 19 pkat per mg of protein. The influence of transgenic expression oftdc on the activities of anthranilate synthase (AS) and chorismate mutase (CM) were examined in 10 transgenic tobacco plants. The specific activities of these two chorismate-utilizing enzymes were not significantly affected by expression oftdc, despite their important functions as branch point enzymes in the shikimate pathway. The results indicate that the normal route of tryptophan biosynthesis in plants is sufficient to supply a considerable amount of this essential amino acid for the biosynthesis of secondary metabolites. Despite their increased tryptamine content, the growth and development of the transgenic tobacco plants expressingtdc appeared normal. 相似文献
12.
13.
Park S Lee K Kim YS Chi YT Shin JS Back K 《Bioprocess and biosystems engineering》2012,35(1-2):205-210
Tyramine, one of the various biogenic amines found in plants, is derived from the aromatic L-amino acid tyrosine through the catalytic reaction of tyrosine decarboxylase (TYDC). Tyramine overproduction by constitutive expression of TYDC in rice plants leads to stunted growth, but an increased number of tillers. To regulate tyramine production in rice plants, we expressed TYDC under the control of a methanol-inducible plant tryptophan decarboxylase (TDC) promoter and generated transgenic T(2) homozygous rice plants. The transgenic rice plants showed normal growth phenotypes with slightly increased levels of tyramine in seeds relative to wild type. Upon treatment with 1% methanol, the transgenic rice leaves produced large amounts of tyramine, whereas no increase in tyramine production was observed in wild-type plants. The methanol-induced accumulation of tyramine in the transgenic rice leaves was inversely correlated with the tyrosine level. These data indicate that tyramine production in rice plants can be artificially controlled using the methanol-inducible TDC promoter, suggesting that this promoter could be used to selectively induce the expression of other proteins or metabolites in rice plants. 相似文献
14.
Microbial tyrosine decarboxylase (EC 4.1.1.25) and mammalian aromatic-L-amino-acid decarboxylase (EC 4.1.1.28) catalyse the formation of tyramine from L-tyrosine. These enzymes were characterised after isolation to purity by methods including fast polymer liquid chromatography (FPLC). Tyrosine decarboxylase was isolated from Streptococcus faecalis by FPLC anion exchange chromatography (11-times purification; 72% recovery; 23.2 U/mg protein). FPLC on Phenyl-Superose resulted in purification to 115 U/mg protein. Aromatic-L-amino-acid decarboxylase was isolated from pig kidney by ammonium sulfate fractionation, DEAE chromatography, and FPLC anion exchange chromatography (21-times purification; 22% recovery; 0.71 U/mg protein). By FPLC chromatofocusing, tyrosine decarboxylase eluted at pH 4.3 and aromatic-L-amino-acid decarboxylase at pH 5.0. Isoelectric focusing of tyrosine decarboxylase gave two bands (pI 4.4 and 4.5). With pyridoxal 5'-phosphate removed by ultrafiltration, only one band (pI 4.4) appeared, and SDS polyacrylamide electrophoresis confirmed the purity. FPLC gel filtration resulted in molecular weights 143,000 and 86,000, respectively, for tyrosine decarboxylase and aromatic-L-amino-acid decarboxylase. In SDS electrophoresis, tyrosine decarboxylase had the monomer molecular weight 75,000, showing a dimer structure for the enzyme. 相似文献
15.
16.
Mohammadi M Chalavi V Novakova-Sura M Laliberté JF Sylvestre M 《Biotechnology and bioengineering》2007,97(3):496-505
Optimized plant-microbe bioremediation processes in which the plant initiates the metabolism of xenobiotics and releases the metabolites in the rhizosphere to be further degraded by the rhizobacteria is a promising alternative to restore contaminated sites in situ. However, such processes require that plants produce the metabolites that bacteria can readily oxidize. The biphenyl dioxygenase is the first enzyme of the bacterial catabolic pathway involved in the degradation of polychlorinated biphenyls. This enzyme consists of three components: the two sub-unit oxygenase (BphAE) containing a Rieske-type iron-sulfur cluster and a mononuclear iron center, the Rieske-type ferredoxin (BphF), and the FAD-containing ferredoxin reductase (BphG). In this work, based on analyses with Nicotiana benthamiana plants transiently expressing the biphenyl dioxygenase genes from Burkholderia xenovorans LB400 and transgenic Nicotiana tabacum plants transformed with each of these four genes, we have shown that each of the three biphenyl dioxygenase components can be produced individually as active protein in tobacco plants. Therefore, when BphAE, BphF, and BphG purified from plant were used to catalyze the oxygenation of 4-chlorobiphenyl, detectable amounts of 2,3-dihydro-2, 3-dihydroxy-4'-chlorobiphenyl were produced. This suggests that creating transgenic plants expressing simultaneously all four genes required to produce active biphenyl dioxygenase is feasible. 相似文献
17.
Expression of giant silkmoth cecropin B genes in tobacco 总被引:10,自引:0,他引:10
Dion Florack Sjefke Allefs Rik Bollen Dirk Bosch Bert Visser Willem Stiekema 《Transgenic research》1995,4(2):132-141
Cecropin B is a small antibacterial peptide from the giant silkmothHyalophora cecropia. To reveal the potential of this peptide for engineering bacterial disease resistance into crops, several cecropin B gene constructs were made either for expression in the cytosol or for secretion. All constructs were cloned in a plant expression vector and introduced in tobacco viaAgrobacterium tumefaciens. A cDNA-derived cecropin B gene construct lacking the amino-terminal signal peptide was poorly expressed in transgenic plants at the mRNA level, whereas plants harbouring a full-length cDNA-derived construct containing the insect signal peptide, showed increased cecropin B-mRNA levels. Highest expression was found in plants harbouring a construct with a plant-gene-derived signal peptide. In none of the transgenic plants could the cecropin B peptide be detected. This is most likely caused by breakdown of the peptide by plant endogenous proteases, since a chemically synthesized cecropin B peptide was degraded within seconds in various plant cell extracts. This degradation could be prevented by the addition of specific protease inhibitors and by boiling the extract prior to adding the peptide. In addition, anionic detergents, in contrast to cationic, zwitter-ionic or non-ionic detergents, could prevent this degradation. Nevertheless, transgenic tobacco plants were evaluated for resistance toPseudomonas solanacearum, the causal agent of bacterial wilt of many crops, andP. syringae pv.tabaci, the causal agent of bacterial wildfire, which are highly susceptible to cecropin Bin vitro. No resistance was found. These experiments indicate that introduction and expression of cecropin B genes in tobacco does not result in detectable cecropin B protein levels and resistance to bacterial infections, most likely due to degradation of the protein by endogenous proteases. 相似文献
18.
Regulation of tryptophan and tyrosine hydroxylase 总被引:4,自引:0,他引:4
The synthesis of the neurotransmitters serotonin, norepinephrine, and the dopamine is regulated by the initial amino acid hydroxylases. Little is known about the factors that regulate the level of tryptophan hydroxylase in tissue. However, the level of tyrosine hydroxylase is regulated by transsynaptic induction. Acute regulation of in vivo hydroxylase activity appears to be by substrate availability in the case of tryptophan hydroxylase and possibly by feedback inhibition with tyrosine hydroxylase. A newly described phenomenon which has been termed “receptor mediated feedback inhibition” involving neuronal feedback regulation of the activity of both tyrosine and tryptophan hydroxylase may also have an important role. 相似文献
19.
20.
Da Silva GA 《The Biochemical journal》1931,25(5):1634-1640