首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Recent in vivo studies have revealed that the subgenomic promoter (sgp) in brome mosaic bromovirus (BMV) RNA3 supports frequent homologous recombination events (R. Wierzchoslawski, A. Dzianott, and J. Bujarski, J. Virol. 78:8552-8564, 2004). In this paper, we describe an sgp-driven in vitro system that supports efficient RNA3 crossovers. A 1:1 mixture of two (-)-sense RNA3 templates was copied with either a BMV replicase (RdRp) preparation or recombinant BMV protein 2a. The BMV replicase enzyme supported a lower recombination frequency than 2a, demonstrating a role of other viral and/or host factors. The described in vitro system will allow us to study the mechanism of homologous RNA recombination.  相似文献   

3.
Brome mosaic virus (BMV), a tripartite positive-stranded RNA virus of plants engineered to support intersegment RNA recombination, was used for the determination of sequence and structural requirements of homologous crossovers. A 60-nucleotide (nt) sequence, common between wild-type RNA2 and mutant RNA3, supported efficient repair (90%) of a modified 3' noncoding region in the RNA3 segment by homologous recombination with wild-type RNA2 3' noncoding sequences. Deletions within this sequence in RNA3 demonstrated that a nucleotide identity as short as 15 nt can support efficient homologous recombination events, while shorter (5-nt) sequence identity resulted in reduced recombination frequency (5%) within this region. Three or more mismatches within a downstream portion of the common 60-nt RNA3 sequence affected both the incidence of recombination and the distribution of crossover sites, suggesting that besides the length, the extent of sequence identity between two recombining BMV RNAs is an important factor in homologous recombination. Site-directed mutagenesis of the common sequence in RNA3 did not reveal a clear correlation between the stability of predicted secondary structures and recombination activity. This indicates that homologous recombination does not require similar secondary structures between two recombining RNAs at the sites of crossovers. Nearly 20% of homologous recombinants were imprecise (aberrant), containing either nucleotide mismatches, small deletions, or small insertions within the region of crossovers. This implies that homologous RNA recombination is not as accurate as proposed previously. Our results provide experimental evidence that the requirements and thus the mechanism of homologous recombination in BMV differ from those of previously described heteroduplex-mediated nonhomologous recombination (P. D. Nagy and J. J. Bujarski, Proc. Natl. Acad. Sci. USA 90:6390-6394, 1993).  相似文献   

4.
Previously, we observed that crossovers sites of RNA recombinants clustered within or close to AU-rich regions during genetic recombination in brome mosaic bromovirus (BMV) (P. D. Nagy and J. J. Bujarski. J. Virol. 70:415-426, 1996). To test whether AU-rich sequences can facilitate homologous recombination, AU-rich sequences were introduced into parental BMV RNAs (RNA2 and RNA3). These insertions created a homologous RNA2-RNA3 recombination hotspot. Two other AU-rich sequences also supported high-frequency homologous recombination if a common sequence with high or average G/C content was present immediately upstream of the AU-rich element. Homologous RNA recombination did not require any additional sequence motifs or RNA structures and was position nonspecific within the 3' noncoding region. These results suggest that nucleotide content (i.e., the presence of common 5' GC-rich or moderately AU-rich and 3' AU-rich regions) is the important factor that determines the sites of homologous recombination. A mechanism that involves replicase switching during synthesis of positive-sense RNA strands is presented to explain the observed results.  相似文献   

5.
All three single-stranded RNAs of the brome mosaic virus (BMV) genome contain a highly conserved, 193-base 3' noncoding region. To study the recombination between individual BMV RNA components, barley plants were infected with a mixture of in vitro-transcribed wild-type BMV RNAs 1 and 2 and an RNA3 mutant that carried a deletion near the 3' end. This generated a population of both homologous and nonhomologous 3' recombinant BMV RNA3 variants. Sequencing revealed that these recombinants were derived by either single or double crossovers with BMV RNA1 or RNA2. The primary sequences at recombinant junctions did not show any similarity. However, they could be aligned to form double-stranded heteroduplexes. This suggested that local hybridizations among BMV RNAs may support intermolecular exchanges.  相似文献   

6.
7.
Previously we demonstrated frequent homologous crossovers among molecules of the RNA3 segment in the tripartite brome mosaic bromovirus (BMV) RNA genome (A. Bruyere, M. Wantroba, S. Flasinski, A. Dzianott, and J. J. Bujarski, J. Virol. 74:4214-4219, 2000). To further our knowledge about mechanisms of viral RNA genome variability, in this paper we have studied homologous recombination in BMV RNA1 and RNA2 components during infection. We have found that basal RNA-RNA crossovers could occur within coding regions of both RNAs, although recombination frequencies slightly varied at different RNA sections. In all cases, the frequencies were much lower than the rate observed for the intercistronic recombination hot spot in BMV RNA3. Probability calculations accounted for at least one homologous crossover per RNA molecule per replication cycle. In addition, we have demonstrated an efficient repair of mutations within the conserved 3' and 5' noncoding regions, most likely due to error-prone BMV RNA replication. Overall, our data verify that homologous crossovers are common events a during virus life cycle, and we discuss their importance for viral RNA genetics.  相似文献   

8.
The coat protein gene in RNA 3 of alfalfa mosaic virus (AMV; genus Alfamovirus, family Bromoviridae) is translated from the subgenomic RNA 4. Analysis of the subgenomic promoter (sgp) in minus-strand RNA 3 showed that a sequence of 37 nt upstream of the RNA 4 start site (nt +1) was sufficient for full sgp activity in an in vitro assay with the purified viral RNA-dependent RNA-polymerase (RdRp). The sequence of nt -6 to -29 could be folded into a potential hairpin structure with a loop represented by nt -16, -17, and -18, and a bulge involving nt -23. By introducing mutations that disrupted base pairing and compensatory mutations that restored base pairing, it was shown that base pairing in the top half of the putative stem (between the loop and bulge) was essential for sgp activity, whereas base pairing in the bottom half of the stem was less stringently required. Deletion of the bulged residue A-23 or mutation of this residue into a C strongly reduced sgp activity, but mutation of A-23 into U or G had little effect on sgp activity. Mutation of loop residues A-16 and A-17 affected sgp activity, whereas mutation of U-18 did not. Using RNA templates corresponding to the sgp of brome mosaic virus (BMV; genus Bromovirus, family Bromoviridae) and purified BMV RdRp, evidence was obtained indicating that also in BMV RNA a triloop hairpin structure is required for sgp activity.  相似文献   

9.
Kwon SJ  Rao AL 《Journal of virology》2012,86(9):5204-5220
Despite overwhelming interest in the impact exerted by recombination during evolution of RNA viruses, the relative contribution of the polarity of inoculum templates remains poorly understood. Here, by agroinfiltrating Nicotiana benthamiana leaves, we show that brome mosaic virus (BMV) replicase is competent to initiate positive-strand [(+)-strand] synthesis on an ectopically expressed RNA3 negative strand [(-) strand] and faithfully complete the replication cycle. Consequently, we sought to examine the role of RNA polarity in BMV recombination by expressing a series of replication-defective mutants of BMV RNA3 in (+) or (-) polarity. Temporal analysis of progeny sequences revealed that the genetic makeup of the primary recombinant pool is determined by the polarity of the inoculum template. When the polarity of the inoculum template was (+), the recombinant pool that accumulated during early phases of replication was a mixture of nonhomologous recombinants. These are longer than the inoculum template length, and a nascent 3' untranslated region (UTR) of wild-type (WT) RNA1 or RNA2 was added to the input mutant RNA3 3' UTR due to end-to-end template switching by BMV replicase during (-)-strand synthesis. In contrast, when the polarity of the inoculum was (-), the progeny contained a pool of native-length homologous recombinants generated by template switching of BMV replicase with a nascent UTR from WT RNA1 or RNA2 during (+)-strand synthesis. Repair of a point mutation caused by polymerase error occurred only when the polarity of the inoculum template was (+). These results contribute to the explanation of the functional role of RNA polarity in recombination mediated by copy choice mechanisms.  相似文献   

10.
Brome mosaic virus (BMV) is a tripartite genome, positive-sense RNA virus of plants. Previously it was demonstrated that local hybridization between BMV RNAs (RNA–RNA heteroduplex formation) efficiently promotes non-homologous RNA recombination. In addition, studies on the role of the BMV polymerase in RNA recombination suggested that the location of non-homologous crossovers depends mostly on RNA structure. As a result, a detailed analysis of a large number of non-homologous recombinants generated in the BMV-based system was undertaken. Recombination hot-spots as well as putative elements in RNA structure enhancing non-homologous crossovers and targeting them in a site-specific manner were identified. To verify these observations the recombinationally active sequence in BMV RNA3 derivative was modified. The results obtained with new RNA3 mutants suggest that the primary and secondary structure of the sequences involved in a heteroduplex formation rather than the length of heteroduplex plays the most important role in the recombination process. The presented data indicate that the sequences proximal to the heteroduplex may also affect template switching by BMV replicase. Moreover, it was shown that both short homologous sequences and a hairpin structure have to accompany a double-stranded region to target non-homologous crossovers in a site-specific manner.  相似文献   

11.
It has been observed that AU-rich sequences form homologous recombination hot spots in brome mosaic virus (BMV), a tripartite positive-stranded RNA virus of plants (P. D. Nagy and J. J. Bujarski, J. Virol. 71:3799–3810, 1997). To study the effect of GC-rich sequences on the recombination hot spots, we inserted 30-nucleotide-long GC-rich sequences downstream of AU-rich homologous recombination hot spot regions in parental BMV RNAs (RNA2 and RNA3). Although these insertions doubled the length of sequence identity in RNA2 and RNA3, the incidence of homologous RNA2 and RNA3 recombination was reduced markedly. Four different, both highly structured and nonstructured downstream GC-rich sequences had a similar “homologous recombination silencing” effect on the nearby hot spots. The GC-rich sequence-mediated recombination silencing mapped to RNA2, as it was observed when the GC-rich sequence was inserted at downstream locations in both RNA2 and RNA3 or only in the RNA2 component. On the contrary, when the downstream GC-rich sequence was present only in the RNA3 component, it increased the incidence of homologous recombination. In addition, upstream insertions of similar GC-rich sequences increased the incidence of homologous recombination within downstream hot spot regions. Overall, this study reveals the complex nature of homologous recombination in BMV, where sequences flanking the common hot spot regions affect recombination frequency. A replicase-driven template-switching model is presented to explain recombination silencing by GC-rich sequences.  相似文献   

12.
Studies on the molecular mechanism of genetic recombination in RNA viruses have progressed at the time when experimental systems of efficient recombination crossovers were established. The system of brome mosaic virus (BMV) represents one of the most useful and most advanced tools for investigation of the molecular aspects of the mechanism of RNA-RNA recombination events. By using engineered BMV RNA components, the occurrence of both homologous and nonhomologous crosses were demonstrated among the segments of the BMV RNA genome. Studies show that the two types of crossovers require different RNA signal sequences and that both types depend upon the participation of BMV replicase proteins. Mutations in the two BMV-encoded replicase polypeptides (proteins 1a and 2a) reveal that their different regions participate in homologous and in nonhomologous crossovers. Based on all these data, it is most likely that homologous and nonhomologous recombinant crosses do occur via two different types of template switching events (copy-choice mechanism) where viral replicase complex changes RNA templates during viral RNA replication at distinct signal sequences. In this review we discuss various aspects of the mechanism of RNA recombination in BMV and we emphasize future projections of this research.  相似文献   

13.
A model system of a single-stranded trisegment Brome mosaic bromovirus (BMV) was used to analyze the mechanism of homologous RNA recombination. Elements capable of forming strand-specific stem-loop structures were inserted at the modified 3' noncoding regions of BMV RNA3 and RNA2 in either positive or negative orientations, and various combinations of parental RNAs were tested for patterns of the accumulating recombinant RNA3 components. The structured negative-strand stem-loops that were inserted in both RNA3 and RNA2 reduced the accumulation of RNA3-RNA2 recombinants to a much higher extent than those in positive strands or the unstructured stem-loop inserts in either positive or negative strands. The use of only one parental RNA carrying the stem-loop insert reduced the accumulation of RNA3-RNA2 recombinants even further, but only when the stem-loops were in negative strands of RNA2. We assume that the presence of a stable stem-loop downstream of the landing site on the acceptor strand (negative RNA2) hampers the reattachment and reinitiation processes. Besides RNA3-RNA2 recombinants, the accumulation of nontargeted RNA3-RNA1 and RNA3-RNA3 recombinants were observed. Our results provide experimental evidence that homologous recombination between BMV RNAs more likely occurs during positive- rather than negative-strand synthesis.  相似文献   

14.
Brome mosaic bromovirus (BMV), a tripartite plus-sense RNA virus, has been used as a model system to study homologous RNA recombination among molecules of the same RNA component. Pairs of BMV RNA3 variants carrying marker mutations at different locations were coinoculated on a local lesion host, and the progeny RNA3 in a large number of lesions was analyzed. The majority of doubly infected lesions accumulated the RNA3 recombinants. The distribution of the recombinant types was relatively even, indicating that both RNA3 counterparts could serve as donor or as acceptor molecules. The frequency of crossovers between one pair of RNA3 variants, which possessed closely located markers, was similar to that of another pair of RNA3 variants with more distant markers, suggesting the existence of an internal recombination hot spot. The majority of crossovers were precise, but some recombinants had minor sequence modifications, possibly marking the sites of imprecise homologous crossovers. Our results suggest discontinuous RNA replication, with the replicase changing among the homologous RNA templates and generating RNA diversity. This approach can be easily extended to other RNA viruses for identification of homologous recombination hot spots.  相似文献   

15.
A system that uses engineered heteroduplexes to efficiently direct in vivo crossovers between brome mosaic virus (BMV) RNA1 and RNA3 (P. Nagy and J. Bujarski, Proc. Natl. Acad. Sci. USA 90:6390-6394, 1993) has been used to explore the possible involvement of BMV 1a protein, an essential RNA replication factor, in RNA recombination. Relative to wild-type 1a, several viable amino acid insertion mutations in the helicase-like domain of BMV 1a protein affected the nature and distribution of crossover sites in RNA3-RNA1 recombinants. At 24 degrees C, mutants PK19 and PK21 each increased the percentage of asymmetric crossovers, in which the RNA1 and RNA3 sites joined by recombination were not directly opposite each other on the engineered RNA3-RNA1 heteroduplex used to target recombination but rather were separated by 4 to 85 nucleotides. PK21 and another 1a mutant, PK14, also showed increases in the fraction of recombinants containing nontemplated U residues at the recombination junction. At 33 degrees C, the highest temperature that permitted infections with PK19, which is temperature sensitive for RNA replication, the mean location of RNA1-RNA3 crossovers in recombinants recovered from PK19 infections was shifted by nearly 25 bp into the energetically less stable side of the RNA1-RNA3 heteroduplex. Thus, mutations in the putative helicase domain of the 1a protein can influence BMV RNA recombination. The results are discussed in relation to models for recombination by template switching during pausing of RNA replication at a heteroduplexed region in the template.  相似文献   

16.
Two types of non-homologous RNA recombination in brome mosaic virus   总被引:1,自引:0,他引:1  
Non-homologous RNA recombination is a process enabling the exchange of genetic material between various (related or unrelated) RNA-based viruses. Despite extensive investigations its molecular mechanism remains unclear. Studies on genetic recombination in brome mosaic virus (BMV) have shown that local hybridization between genomic RNAs induces frequent non-homologous crossovers. A detailed analysis of recombinant structures suggested that local complementary regions might be involved in two types of non-homologous recombination in BMV: site-specific and heteroduplex-mediated. To verify the above hypothesis and better recognize the mechanism of the phenomenon studied we have tested how the putative types of recombination are affected by a specific mutation in the BMV polymerase gene or by changes in RNA structure. The experiments undertaken revealed substantial differences between site-specific and heteroduplex-mediated recombination, indicating that they occur according to different mechanisms. The former can be classified as homology-assisted, and the latter as homology-independent. In addition to local RNA/RNA hybridization, short regions of homology are required for site-specific crossovers to occur. They are most efficiently mediated if one homologous sequence is located at the beginning of and the second just before a double-stranded region. At present it is difficult to state what is the mechanism of heteroduplex-mediated recombination. Earlier it was postulated that strong RNA/RNA interaction enforces template switching by the viral replicase. There are, however, several observations questioning this model and indicating that some other factors, which are still unknown, may influence heteroduplex-mediated crossovers.  相似文献   

17.
18.
Shapka N  Nagy PD 《Journal of virology》2004,78(5):2288-2300
RNA recombination can be facilitated by recombination signals present in viral RNAs. Among such signals are short sequences with high AU contents that constitute recombination hot spots in Brome mosaic virus (BMV) and retroviruses. In this paper, we demonstrate that a defective interfering (DI) RNA, a model template associated with Tomato bushy stunt virus (TBSV), a tombusvirus, undergoes frequent recombination in plants and protoplast cells when it carries the AU-rich hot spot sequence from BMV. Similar to the situation with BMV, most of the recombination junction sites in the DI RNA recombinants were found within the AU-rich region. However, unlike BMV or retroviruses, where recombination usually occurred with precision between duplicated AU-rich sequences, the majority of TBSV DI RNA recombinants were imprecise. In addition, only one copy of the AU-rich sequence was essential to promote recombination in the DI RNA. The selection of junction sites was also influenced by a putative cis-acting element present in the DI RNA. We found that this RNA sequence bound to the TBSV replicase proteins more efficiently than did control nonviral sequences, suggesting that it might be involved in replicase "landing" during the template switching events. In summary, evidence is presented that a tombusvirus can use the recombination signal of BMV. This supports the idea that common AU-rich recombination signals might promote interviral recombination between unrelated viruses.  相似文献   

19.
20.
Brome mosaic virus (BMV) is a positive-sense RNA plant virus, the tripartite genomic RNAs of which are separately packaged into virions. RNA3 is copackaged with subgenomic RNA4. In barley protoplasts coinoculated with RNA1 and RNA2, an RNA3 mutant with a 69-nucleotide (nt) deletion in the 3'-proximal region of the 3a open reading frame (ORF) was very poorly packaged compared with other RNA3 mutants and wild-type RNA3, despite their comparable accumulation in the absence of coat protein. Computer analysis of RNA secondary structure predicted two stem-loop (SL) structures (i.e., SL-I and SL-II) in the 69-nt region. Disruption of SL-II, but not of SL-I, significantly reduced RNA3 packaging. A chimeric BMV RNA3 (B3Cmp), with the BMV 3a ORF replacing that of cucumber mosaic virus (CMV), was packaged negligibly, whereas RNA4 was packaged efficiently. Replacement of the 3'-proximal region of the CMV 3a ORF in B3Cmp with the 3'-proximal region of the BMV 3a ORF significantly improved packaging efficiency, and the disruption of SL-II in the substituted BMV 3a ORF region greatly reduced packaging efficiency. These results suggest that the 3'-proximal region of the BMV 3a ORF, especially SL-II predicted between nt 904 and 933, plays an important role in the packaging of BMV RNA3 in vivo. Furthermore, the efficient packaging of RNA4 without RNA3 in B3Cmp-infected cells implies the presence of an element in the 3a ORF of BMV RNA3 that regulates the copackaging of RNA3 and RNA4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号