首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
目的:通过观察肌电图(EMG)的变化,了解运动员与普通中学生在纵跳过程中,膝关节屈伸肌群工作特点,为运动员科学选材提供依据。方法:30名男女青少年运动员和30名男女普通中学生进行各种形式纵跳(蹲跳、反向跳、下落跳),测试膝关节屈伸肌群的EMG变化情况。结果:主动肌(股外肌)EMG的变化存在性别差异,随着下肢工作强度的增加,男运动员积分肌电图(iEMG)和平均功率频率(Fmean)均没有显著变化,女运动员iEMG增加,Fmean没有显著变化,对抗肌(股二头肌),随着下肢工作强度的增加。青少年运动员EMG活动变化较小,而普通中学生的EMG活动明显增加。结论:在增加工作负荷的过程中,男运动员膝关节伸肌群以提高效率为主,女运动员以提高肌肉的募集数量为主;运动员的对抗肌协调水平高于普通中学生。  相似文献   

2.
肌电图检测膈肌疲劳   总被引:1,自引:0,他引:1  
呼吸肌疲劳是呼吸衰竭的重要原因之一。膈肌是主要的呼吸肌,在呼吸衰竭中起重要作用。目前检测膈肌疲劳(DiF)的方法主要有跨膈压和膈肌肌电图(EMGdi)。EMGdi又有食道电极和体表电极两种方法。测定跨膈压和食道电极法EMGdi均需要在食道和胃内放置气囊导管或电极,较难推广。体表电极法EMGdi简便易行,但对其检测DiF的意义尚有争议。本研究对此作初步的探讨。  相似文献   

3.
目的: 观察中老年人进行振动训练时下肢骨骼肌激活特征和生理负荷指标,探讨将振动训练应用于中老年人的可行性。方法: 选取28名50~65岁健康中老年人作为研究对象,分别在振动条件下(VT)和无振动条件下(NT)进行5次40 s静力半蹲练习,测试下肢主要肌群表面肌电和生理负荷指标。结果: ①VT受试者腓肠肌内侧(MG)、腓肠肌外侧(LG)、胫骨前肌(TA)、股直肌(RF)、股内侧肌(VM)、股外侧肌(VL)、股二头肌(BF)、半腱肌(ST)均方根振幅(RMS)显著高于NT(P<0.01,P<0.05),VL、BF、ST、MG、LG、TA平均功率频率(MPF)显著高于NT(P<0.05);VM、VL、BF、MG、LG、TA平均功率斜率(MPF slope)显著高于NT(P<0.05);②VT受试者心率和摄氧量显著高于NT(P<0.05),主观疲劳等级(RPE)与NT比较无显著差异;③VT受试者尿素氮与NT无显著差异。结论: 50~65岁中老年人采用施加振动刺激的静力半蹲练习可以使机体募集更多的运动单位和更高比例的快肌纤维参与工作,在不增加主观疲劳感的基础上增加运动强度,同时未发现肌肉损伤。  相似文献   

4.
运用线性和非线性分析方法分析不同强度等长收缩诱发局部肌肉疲劳及恢复过程中表面肌电信号(surface electromyogram,sEMG)特征的变化规律,探讨影响sEMG信号变化的可能原因和机制.结果显示,在肱二头肌疲劳收缩过程中,sEMG的特征指标平均肌电值(average EMG,AEMG)、平均功率频率(mean power frequency,MPF)、Lempel-Ziv复杂度(Lempel-Ziv complexity,C(n))和确定性线段百分数(Determinism%,% DET)的变化具有良好的规律性.恢复期AEMG没有表现出规律性的变化,MPF、C(n)和?T在恢复期2秒即开始显著恢复,在前10秒恢复很快,随后恢复速度变慢.恢复初期sEMG信号特征的快速变化提示中枢控制因素可能发挥更大作用.  相似文献   

5.
目的:分析膝骨性关节炎患者(KOA)登梯时下肢肌群肌电活动与关节角冲量与正常人的差异,为康复方案设计提供生物力学参考。方法:采用Qualisys三维运动分析系统以及Delsys无线表面肌电系统对招募10名符合纳排标准的膝骨性关节炎患者和10名正常人进行登梯活动的步态检测,采用下肢肌群均方根值、股内外侧肌协同收缩比值、股二头肌和股外侧肌共同活动比值和髋、膝关节在冠状面和矢状面上角冲量对比分析与两组登梯时下肢肌群收缩模式对关节负荷的影响。结果:与正常对照相比,上梯时膝骨性关节炎患者股直肌均方根值RMS(Root Mean Square)增大(P0.05),膝骨性关节炎患者股内外侧肌收缩均方根值比值(RMS(Vastus Medialis)VM/(Vastus Lateralis)VL)减小(P0.05),膝骨性关节炎患者腘绳肌与股外侧肌收缩比值(RMS(Biceps Femoris)BF/VL增大(P0.05)。下梯时,膝骨性关节炎患者股直肌均方根值(RMS)增大(P0.05),臀大肌均方根值(RMS)减小(P0.05),股内外侧肌收缩均方根比值(RMS VM/VL)减小(P0.05)。上梯时,膝骨性关节炎患者髋、膝关节冠状面上的关节角冲量大于正常人(P0.05),膝关节在矢状面上关节角冲量大于正常组(P0.05),下梯髋、膝关节冠状面、矢状面上的角冲量无统计学差异(P0.05)。KOA组VM/VL、BF/VL与膝关节在冠状面和矢状面上的角冲量的改变没有直接的相关性(P0.05)。结论:膝骨性关节炎患者在登梯活动时股直肌的收缩活动增加,股内外侧肌的协同收缩下降,主动肌与拮抗肌的共同收缩增加,膝骨性关节炎患者在面对登梯活动时下肢肌群选择性激活和高激活状态协调一致,促进关节稳定。虽然下肢神经肌肉的收缩模式和膝关节负荷之间没有直接的相关性,可能是对膝关节负荷产生影响的生物力学因素较多,神经肌肉的收缩模式只是部分影响因素,后续将增加其他生物力学因素进一步研究。  相似文献   

6.
目的:观察共同性外斜视患者内直肌中Myf-5的表达变化,探讨其在共同性外斜视发病机制中的作用。方法:收集青岛大学医学院附属医院2009年12月-2010年11月住院手术治疗的共同性外斜视病人获得的内直肌段为斜视组,共16例。另选同期行眼球摘除或角膜移植供体取得的内直肌为成人对照组(共6例)。所有的内直肌段固定切片后行Myf-5免疫组织化学染色,测Myf-5在眼外肌中表达的平均光密度值,对两组间平均光密度值进行比较。结果:Myf-5的平均光密度值在斜视组0.024±0.041,对照组0.233±0.024,两者差异具有统计学意义(P<0.01)。结论:眼外肌中Myf-5表达的降低可能与斜视的发病有关。  相似文献   

7.
介绍了用于肌肉动态收缩期间非平稳表面肌电信号的时频分析方法。用短时傅里叶变换、Wigner-Ville分布及Choi-Williams分布计算了表面肌电信号的时频分布,用于信号频率内容随时间演化的可视化观察。通过计算瞬时频谱参数,对肌肉疲劳的电表现进行量化描述。分析了反复性的膝关节弯曲和伸展运动期间从股外侧肌所记录的表面肌电信号。发现和在静态收缩过程中观察到的平均频率线性下降不同,在动态收缩期间瞬时平均频率的变化过程是非线性的并且更为复杂,且与运动的生物力学条件有关。研究表明将时频分析技术应用于动态收缩期间的表面肌电信号可以增加用传统的频谱分析技术不能得到的信息。  相似文献   

8.
目的:观察共同性外斜视患者内直肌中Myf-5的表达变化,探讨其在共同性外斜视发病机制中的作用.方法:收集青岛大学医学院附属医院2009年12月-2010年11月住院手术治疗的共同性外斜视病人获得的内直肌段为斜视组,共16例.另选同期行眼球摘除或角膜移植供体取得的内直肌为成人对照组(共6例).所有的内直肌段固定切片后行Myf-5免疫组织化学染色,测Myf-5在眼外肌中表达的平均光密度值,对两组间平均光密度值进行比较.结果:Myf-5的平均光密度值在斜视组0.024±0.041,对照组0.233±0.024,两者差异具有统计学意义(P<0.01).结论:眼外肌中Myf-5表达的降低可能与斜视的发病有关.  相似文献   

9.
连续递增负荷条件下肌肉活动的力-电关系   总被引:1,自引:0,他引:1  
目的:观察非疲劳状态下肱二头肌在静态连续递增负荷下sEMG信号的线性和非线性指标变化规律,探讨非疲劳状态下肌肉活动的力-电关系。方法:记录11名男性受试者肱二头肌在完成为时5s连续递增负荷等长收缩过程中的sEMG信号,观察线性分析指标AEMG、MPF、MF与非线性分析指标C(N)和DET%的变化规律。结果:AEMG由第1s的112.14μV逐渐上升到第5s的1277.18μV,与负荷水平呈明显线性相关;DET%从第1s的74.95下降到第5s的46.78,呈单调递减变化;MPF、MF和C(N)在本试验条件下未发生明显改变。结论:在连续递增收缩过程中,线性分析指标AEMG呈线性递增性变化,而MPF和MF无显著改变;非线性分析指标DET%随用力程度的连续递增而递减,而C(N)则保持相对稳定。  相似文献   

10.
目的:探讨矫治大角度外斜视在采用超常量徙后外直肌时,肌肉断端的缝合位置问题及外直肌悬吊后徙术的可行性。方法:对2 0 0 1年以来的15例外斜视(斜视度最小为2 5°,最大为4 5°)的患者采用外直肌悬吊后徙的方法,即:在外直肌止端后1mm两侧缘各做一套环式缝合结扎后,于肌止端剪断外直肌。由肌止点向后约5mm处,将肌肉缝线平行外直肌上下缘穿过浅层巩膜约2mm后穿出巩膜。测量肌止点与拟行肌肉缝线结扎点后肌肉断端的距离是否与术前拟行后徙量相符。确定后结扎缝线,形成吊床状。结果:15例外斜视患者,11例行双眼外直肌超常量徙后,4例在双眼外直肌徙后同时联合单眼内直肌缩短术,外直肌徙后均采用悬吊式徙后方法,术后观察6 - 12个月,1例残留5°外斜,其余14例均达到正常眼位。结论:超常量徙后外直肌时,采用悬吊后徙方法,既减少了眼外肌与眼球筋膜的大范围粘连及手术操作困难时易带来的巩膜意外损伤,又达到了超常量徙后矫治大角度外斜视的目的。手术操作简便易行,值得临床应用。  相似文献   

11.
The purpose of this study was to verify the difference between carrying a load on the sacrum (LOS) and on the lumbar vertebrae (LOL) in oxygen uptake, muscle activities, heart rate, cadence, and subjective response. Nine males (26.7 +/- 3.1 years old), each carrying a 7.5 kg carrier frame and a 40 kg load, walked on a treadmill at a speed of 50 m/min. EMGs were recorded from the trapezius, rectus abdominis, erector spinae, vastus lateralis, rectus femoris, vastus medialis, biceps femoris long head, tibial anterior, soleus, medial head of gastrocnemius, and the lateral head of gastrocnemius. For each subject the integrated EMG (IEMG) was normalized by dividing the IEMG in the LOL and LOS by the IEMG in a no-load condition (NL) for each investigated muscle. The following was significantly higher in LOL than in LOS: oxygen uptake; IEMG of the tibial anterior, soleus, and medial head of gastrocnemius; cadence; and rated perceived exertion. However, IEMG of the erector spinae was significantly lower in LOL than in LOS. These results suggest that seita-fitting in LOS causes a decrease of leg muscle activities, which causes oxygen uptake to decrease beyond the increase of the erector spinae activity.  相似文献   

12.
The aim of this study was to investigate the reliability of peak torque and surface electromyography (EMG) variable's root mean square (RMS) and mean frequency (MNF) during an endurance test consisting of repetitive maximum concentric knee extensions. Muscle fatigue has been quantified in several ways, and in isokinetic testing it is based on a set of repetitive contractions. To assess test-retest reliability, two sets of 100 dynamic maximum concentric knee extensions were performed using an isokinetic dynamometer. The two series were separated by 7-8 days. The subjects relaxed during the passive flexion phase. Twenty (10 men and 10 women) clinically healthy subjects volunteered.Peak torque and EMG from rectus femoris, vastus medialis, vastus lateralis and biceps femoris were recorded. RMS and MNF were calculated from the EMG signal. The reliability was calculated with intraclass correlation coefficient ICC (1.1) and standard error of measurements (SEM). The reliability of peak torque was good (ICC=0.93) and SEM showed low values. ICC was good for absolute RMS of rectus femoris (ICC>/=0.80), vastus medialis (ICC>/=0.88) and vastus lateralis (ICC>/=0.82) and MNF of rectus femoris (ICC>/=0.82) and vastus medialis (ICC>/=0.83). Peak torque, and MNF and RMS of rectus femoris and vastus medialis are reliable variables obtained from an isokinetic endurance test of the knee extensors.  相似文献   

13.
The purpose of this study was to determine the effect of gender on changes in electromyographic (EMG) signal characteristics of the quadriceps muscles with increasing force and with fatigue. A total of fourteen healthy adults (seven men, seven women) participated in the study. Subjects had to perform isometric ramp contractions in knee extension with the force gradually increasing from 0 to 100% of the maximal voluntary contraction (MVC) in a 6-s period. Subjects then performed a fatigue task, consisting of a sustained maximum isometric knee extension contraction held until force decreased below 50% of the pre-fatigue MVC. Subjects also performed a single ramp contraction immediately after the fatigue task. The Root Mean Square (RMS) amplitude, mean power frequency (MPF) and median frequency (MF) of EMG signals obtained from the vastus lateralis, vastus medialis and rectus femoris were calculated at nine different force levels from the ramp contractions (10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC), as well as every 5 s during the fatigue task. The main results were a more pronounced increase in EMG RMS amplitude for the three muscles and in MPF for the VL muscle with force in men compared with women. No significant effect of gender was found with regards to fatigue. These observations most likely reflect a moderately greater type II fiber content and/or area in the VL muscle of men compared to that of women.  相似文献   

14.
In this study we aimed to determine the reliability of the surface electromyography (EMG) of leg muscles during vertical jumping between two test sessions, held 2 weeks apart. Fifteen females performed three maximal vertical jumps with countermovement. The displacement of the body centre of mass (BCM), duration of propulsion phase (time), range of motion (ROM) and angular velocity of the knee and surface EMG of four leg muscles (rectus femoris, vastus medialis. biceps femoris and gastrocnemius) were recorded during the jumps. All variables were analysed throughout the propulsion and mid-propulsion phases. Intraclass correlation coefficients (ICC) for the rectus femoris, vastus medialis, biceps femoris and gastrocnemius were calculated to be 0.88, 0.70, 0.24 and 0.01, respectively. BCM, ROM and time values all indicated ICC values greater than 0.90, and the mean knee angular velocity was slightly lower, at 0.75. ICCs between displacement of the BCM and integrated EMG (IEMG) of the muscles studied were less than 0.50. The angular velocity of the knee did not correlate well with muscle activity. Factors that may have affected reliability were variations in the position of electrode replacement, skin resistance, cross-talk between muscles and jump mechanics. The results of this study suggest that while kinematic variables are reproducible over successive vertical jumps, the degree of repeatability of an IEMG signal is dependent upon the muscle studied.  相似文献   

15.
The first aim was to investigate the impact of different electromyography (EMG) parameters as a reference to normalize the EMG amplitude of the superficial quadriceps femoris muscles across different sets of a knee extension exercise. The second aim is to examine the reliability between days of the EMG parameters used as a reference. Eleven young males attended the laboratory on 4 different days and performed one repetition maximum test, maximumvoluntary isometric contractions, and a resistance training protocol until failure. Surface EMG was placed over the rectus femoris, vastus lateralis, and vastus medialis muscles. Seven EMG parameters were calculated from the tasks and used to normalize EMG amplitude measured during the resistance training protocol. A repeated-measures two-way ANOVA was used (normalized EMG amplitude × set) to compare normalized EMG across sets, while an intraclass correlation coefficient, coefficient of variation, and Bland-Altman plots were used to calculate the intra-day reliability of the EMG parameters. The present investigation showed that normalized EMG amplitude of the superficial muscles of the quadriceps measured during a knee extension exercise is influenced by the EMG parameter and depends on the muscle. While rectus femoris and vastus lateralis normalized EMG amplitude presented one parameter among seven showing similar value to the other parameters, VM showed two. Lastly, all EMG parameters for all muscles presented an overall excellent reliability and agreement between days.  相似文献   

16.
The purpose of this study was to compare different normalization methods of electromyographic (EMG) activity of antagonists during isokinetic eccentric and concentric knee movements. Twelve women performed three maximum knee extensions and flexions isometrically and at isokinetic concentric and eccentric angular velocities of 30 °·s−1, 90 °·s−1, 120 °·s−1 and 150 °·s−1. The EMG activity of the vastus lateralis, rectus femoris, vastus medialis and hamstrings was recorded. The antagonist integrated IEMG values were normalized relative to the EMG of the same muscle during an isometric maximal action (static method). The values were also expressed as a percentage of the EMG activity of the same muscle, at the same angle, angular velocity and muscle action (dynamic method) when the muscle was acting as an agonist. Three-way analysis of variance (ANOVA) designs indicated significantly greater IEMG normalized with the dynamic method compared to the EMG derived using the static method (P < 0.05). These differences were more evident at concentric angular velocities and at the first and last 20 ° of the movement. The present findings demonstrate that the method of normalization significantly influences the conclusions on antagonistic activity during isokinetic maximum voluntary efforts. The dynamic method of normalization is more appropriate because it considers the effects of muscle action, muscle length and angular velocity on antagonist IEMG.  相似文献   

17.
The objective of the present study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during dynamic sub-maximal knee extension exercise between young adult men and women. Thirty subjects completed, in a random order, 2 sub-maximal repetitions of single-leg knee extensions at 20-90% of their one-repetition maximum (1RM). Vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscle integrated EMG (IEMG) during each sub-maximal lift was normalized to the respective 1RM for concentric, isometric and eccentric modes. The EMG median frequency (f(med)) was determined over the isometric mode. Men attained a significantly (p<0.05) greater knee angular velocity than the women during the concentric mode (83.6+/-19.1 degrees /s and 67.4+/-19.8 degrees /s, respectively). RF IEMG was significantly lesser than the VM (p=0.014) and VL (p<0.001) muscles, when collapsed across all contraction modes, loads, and sex. Overall IEMG was significantly greater during the concentric (p<0.001) and isometric (p<0.001) modes, than the eccentric mode. Men generated significantly (p=0.03) greater VL muscle IEMG than the women, while the opposite pattern emerged for the RF muscle. VM f(med) (105.1+/-11.1Hz) was significantly lesser than the VL (180.3+/-19.5Hz) and RF (127.7+/-13.9Hz) muscles across all lifting intensities, while the men (137.7+/-10.7Hz) generated greater values than the women (129.0+/-11.4Hz). The findings demonstrate a reduction in QF muscle activation across the concentric to eccentric transition, which may be related to the mode-specific velocity pattern.  相似文献   

18.
The purpose of this study was to examine the responses of peak torque (PT), mean power output (MP), mechanomyographic (MMG) and electromyographic (EMG) amplitudes, and mean power frequencies (MPFs) of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) in men and women during dynamic muscle actions. Twelve women (mean +/- SD age = 22 +/- 3 years) and 11 men (22 +/- 3 years) performed maximal, concentric, isokinetic leg extensions at velocities of 60, 120, 180, 240, and 300 degrees x s(-1) on a Cybex 6000 dynamometer. Piezoelectric MMG-recording sensors and bipolar surface EMG electrodes were placed over the VL, RF, and VM muscles. No sex-related differences were found among the velocity-related patterns for PT, MP, MMG amplitude, MMG MPF, or EMG MPF. There were, however, sex-related differences in the patterns of EMG amplitude across velocity. The results indicated similar velocity-related patterns of increase of MP and MMG amplitude for all 3 muscles and of EMG amplitude for the VL and VM in the women. Velocity-related decreases (p 0.05) across velocity. MMG MPF increased (p < or = 0.05) only between 240 and 300 degrees x s(-1). Overall, these findings suggested that there were sex- and muscle-specific, velocity-related differences in the associations among motor unit activation strategies (EMG amplitude and MPF) and the mechanical aspects of muscular activity (MMG amplitude and MPF). With additional examination and validation, however, MMG may prove useful to practitioners for monitoring training-induced changes in muscle power output.  相似文献   

19.
In comparison to isometric muscle action models, little is known about the electromyographic (EMG) and mechanomyographic (MMG) amplitude and mean power frequency (MPF) responses to fatiguing dynamic muscle actions. Simultaneous examination of the EMG and MMG amplitude and MPF may provide additional insight with regard to the motor control strategies utilized by the superficial muscles of the quadriceps femoris during a concentric fatiguing task. Thus, the purpose of this study was to examine the EMG and MMG amplitude and MPF responses of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during repeated, concentric muscle actions of the dominant leg. Seventeen adults (21.8+/-1.7 yr) performed 50 consecutive, maximal concentric muscle actions of the dominant leg extensors on a Biodex System 3 Dynamometer at velocities of 60 degrees s(-1) and 300 degrees s(-1). Bipolar surface electrode arrangements were placed over the mid portion of the VL, RF, and VM muscles with a MMG contact sensor placed adjacent to the superior EMG electrode on each muscle. Torque, MMG and EMG amplitude and MPF values were calculated for each of the 50 repetitions. All values were normalized to the value recorded during the first repetition and then averaged across all subjects. The cubic decreases in torque at 60 degrees s(-1) (R2 = 0.972) and 300 degrees s(-1) (R2 = 0.931) was associated with a decline in torque of 59+/-24% and 53+/-11%, respectively. The muscle and velocity specific responses for the MMG amplitude and MPF demonstrated that each of the superficial muscles of the quadriceps femoris uniquely contributed to the control of force output across the 50 repetitions. These results suggested that the MMG responses for the VL, RF, VM during a fatiguing task may be influenced by a number of factors such as fiber type differences, alterations in activation strategy including motor unit recruitment and firing rate and possibly muscle wisdom.  相似文献   

20.
This study analysed the changes in electromyographic (EMG) activity of the vastus lateralis, biceps femoris and gastrocnemius muscles during incremental treadmill running. The changes in EMG were related to the lactate and ventilatory thresholds. Ten trained subjects participated in the study. Minute ventilation, oxygen consumption, carbon dioxide expired and the fraction of oxygen in the expired gas were recorded continuously. Venous blood samples were collected at each exercise intensity and analysed for lactate concentration. The EMG were recorded at the end of each exercise intensity using surface electrodes. The EMG were quantified through integration (iEMG) and by calculating the mean power frequency (MPF). The iEMG measurements were characterized by a breakpoint in the vastus lateralis and/or gastrocnemius muscles in eight of the subjects tested. However, the results indicated that blood lactate concentrations had already begun to increase in a nonlinear fashion before the iEMG breakpoint had been surpassed. Consequently, the occurence of the lactate threshold cannot be attributed solely to the change in motor unit recruitment or rate coding patterns demonstrated by the iEMG breakpoint. The ventilatory threshold was shown to be a far more reliable and convenient noninvasive predictor of the lactate threshold in comparison with EMG techniques. In conclusion, the EMG measurements used in this study (i.e. iEMG and MPF) were not considered to be viable noninvasive determinants of the aerobic-anaerobic transition phase in treadmill running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号