首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Fluorescence in situ hybridization with five biotin-labeled probes (three alphoid probes, a probe specific for beta-satellite sequences in all acrocentric chromosomes, and an rDNA probe) was used to characterize 30 different Robertsonian translocations, including three t(13;13); one t(15;15), four t(21;21), three t(13;14), two t(13;15), two (13;21), two t(13;22), one t(14;15), eight t(14;21), two t(14;22), and two t(21;22). Of 8 de novo homologous translocations, only one t(13;13) chromosome was interpreted as dicentric, while 19 of 22 nonhomologous Robertsonian translocations were dicentric. The three monocentric nonhomologous translocations included both of the t(13;21) and one t(21;22). Two of 26 translocations studied using the beta-satellite probe showed a positive signal, while rDNA was undetectable in 10 cases studied. These results indicate that most homologous Robertsonian translocations appear monocentric, while the bulk of nonhomologous translocations show two alphoid signals. A majority of the breakpoints localized using this analysis seem to be distal to the centromere and just proximal to the beta-satellite and nuclear-organizing regions.  相似文献   

3.
Robertsonian translocation rob(16;20) in the heterozygous state was discovered in a subfertile bull of the Czech Siemmental breed. A chromosomal analysis of its family has shown that this dicentric fusion is formed de novo. The present experiments were designed to detect rob(16;20) and determine its incidence for in vitro produced embryos, using fluorescence in situ hybridization (FISH) and rob(1;29) as a detection control. To characterize semen of both bulls with the rob translocations, their sperm was examined for DNA integrity by the sperm chromatin structure assay (SCSA). For in vitro fertilization of oocytes, spermatozoa from a rob(16;20) bull carrier (Czech Siemmental breed) and those from a rob(1;29) bull carrier (Charolais breed) were used. Embryos at the 6- to 8-cell stage were cultured in a vinblastine-supplemented medium for 17 h, and embryos at the blastocyst stage were cultured in a colcemide-supplemented medium for 4 h. The embryos were fixed in methanol and acetic acid with Tween-20. Painting probes for chromosomes 16 (Spectrum Green) and 20 (Spectrum Orange) and chromosomes 1 (Spectrum Orange) and 29 (Spectrum Green) were simultaneously hybridized. In the embryos derived from the rob(16;20) bull, the presence of this translocation was not detected. On the other hand, 52.5% of the embryos derived from the rob(1;29) bull were translocation carriers. There was no significant difference in the frequency of this translocation between early and advanced embryos.  相似文献   

4.
The sperm products of two male carriers of reciprocal translocations were studied by fluorescence in situ hybridization (FISH) using a combination of three probes for each translocation. One patient carried a t(2;18)(p21;q11.2), the other a t(8;9)(q24.2;q32). The probes selected included a centromeric marker for each chromosome involved in the translocation plus a third probe distal to the translocation breakpoint of one of the translocation chromosomes. This assay identifies alternate, adjacent 1, adjacent 2, and 3:1 types of meiotic products. It allows the identification of recombination events and also estimation of the frequency of diploidy. For the t(2;18), the frequency of normal and balanced sperm and of adjacent 1, adjacent 2, and 3:1 products was 43.6%, 29. 8%, 10.5%, and 12.8%, respectively. Similar segregation patterns had been reported for this donor by direct sperm karyotyping of sperm cells. For the t(8;9), the frequency of normal and balanced sperm and of adjacent 1, adjacent 2, and 3:1 products was 44.4%, 41%, 3.1%, and 9.4%, respectively. The frequency of complementary adjacent 1 products was statistically different in both the t(2;18) (P < 0. 0001) and the t(8;9) (P < 0.0001) carrier. When the number of adjacent 2 products with one translocation chromosome (regardless of normal or derivative) was compared to the number of adjacent 2 products with the second translocation chromosome (again, regardless of normal or derivative), no statistical difference was noted for either the t(2;18) (P = 0.32) or the t(8;9) (P = 0.69). Recombination events within the interstitial segment of chromosome 2 were statistically higher than those seen in chromosome 18 (P < 0. 0001), whereas in chromosomes 8 and 9, recombination in the interstitial segments was similar (P = 0.64). The rate of diploidy was similar in both the t(2;18) (0.5%) and the t(8;9) (0.6%). Thus, FISH provides chromosome information on the sperm products produced by translocation carriers, although it cannot provide an assessment of the full chromosome complement of the spermatozoon.  相似文献   

5.
S Selig  K Okumura  D C Ward    H Cedar 《The EMBO journal》1992,11(3):1217-1225
Fluorescence in situ hybridization has been used to visualize specific genomic DNA sequences in interphase nuclei. In normal diploid cells, unreplicated DNA segments give singlet hybridization signals while replicated loci are characterized by doublets. The distribution of these two patterns in unsynchronized cell populations can be used to determine the S phase replication time of any DNA sequence. The validity of this approach was established by analyzing genes whose replication profiles in expressing and non-expressing cells had been determined previously by conventional methods. Using this technique it has been possible to map the replication timing topography of the DNA within and flanking the cystic fibrosis (CF) gene locus on chromosome 7. The gene itself is located within a defined time zone which is approximately 500 kb in length and is under developmental control. It is early replicating in cells which express CF but late replicating in other cell types. These time zones probably represent basic units of chromosome structure.  相似文献   

6.
Honda H  Miharu N  Samura O  He H  Ohama K 《Human genetics》2000,106(2):188-193
Meiotic segregation of chromosomes 14 and 21 in sperm from a 14;21 Robertsonian translocation carrier was analyzed with dual-color FISH using two locus-specific DNA probes (Tel 14q and LSI 21). The frequency of normal or chromosomally balanced sperm, resulting from alternate segregation, was 88.42%. The frequency of unbalanced sperm, resulting from adjacent segregation, was 11.25%. These observed frequencies deviated significantly from the theoretical frequencies (33.33% and 66.67%, respectively) based on random chromosome segregation, with sperm resulting from alternate segregation being preferentially produced in the translocation carrier. With respect to the chromosomally unbalanced sperm, the frequency of 21q disomic sperm was 2.45%, which is in agreement with the frequencies of unbalanced fetuses or offspring at the time of amniocentesis or at term (0-4.3%) reported by others. Although the frequency of 14 or 21 nullisomic sperm should be theoretically equal to that of 14q or 21q disomic sperm in both the carrier and controls, the frequency of nullisomic sperm was significantly higher than that of disomic sperm in the carrier (P=0.0009 for chromosome 14, P<0.0001 for chromosome 21) but not in the controls (P=0.091 for chromosome 14, P=0.74 for chromosome 21). This evidence suggests the occurrence of maturation arrest during spermatogenesis of the carrier.  相似文献   

7.
Chromosomal location of two cloned human satellite DNA III sequences pPD9 and pPD18 has been studied in 30 individuals by in situ hybridization. Pericentromeric localization of the DNA subsets studied was found in practically all chromosomes of the set. The majority of label was observed over the pericentromeric region of chromosome 9 (38.3% for pPD18 clone and 26.2% for pPD9), the short arm of chromosome 15 (17.2% - the pPD9 clone and 10.6% - the pPD18 clone) and the distal part of the long arm of Y chromosome (19.6% - the pPD9 clone and 15.4% - the pPD18 clone). Besides significant interchromosomal differences, moderately pronounced interindividual differences were also detected in the number of grains over the regular sites of the chromosomal location. Pretreatment of slides with DA/DAPI induced differences in the results of quantitative analysis is described.  相似文献   

8.
A human genomic DNA sequence derived from glutamate dehydrogenase pseudogene 1 was used as a probe for in situ hybridization to the chromosomes of three lemur species, Eulemur fulvus mayottensis (EFU), E. macaco macaco (EMA), and E. coronatus (ECO). This sequence, which is 98% homologous to the nucleotide sequence of the gene for human glutamate dehydrogenase (GLUD), was found on homologous bands of three morphologically similar chromosome segments, EFU14, EMA5p, and ECO8q, confirming that different Robertsonian translocations occurred during the evolution of these three species. These loci on the lemur chromosomes probably correspond to the human GLUD locus.  相似文献   

9.
Biotinylated DNA from two satellite-related, repetitive DNA clones, pHuR 98 and pHuR 195 (specific for chromosomes 9 and 16, respectively), and from a Y-specific clone, pY-3.4A, were hybridized to human metaphase chromosomes using fluoresceinated avidin to detect binding. The chromosomes were simultaneously counterstained with distamycin-DAPI to identify the AT-rich heterochromatin of chromosomes 1, 9, 15, 16, and the Y chromosome. With this method, clear results were obtained under both normal and low stringency conditions, allowing hybridization between molecules sharing 80-85% and 60-65% identity, respectively. Thus, additional sites related to the probes could be identified. A close relationship was shown between the heterochromatin of chromosomes 1 and 16, both hybridizing with clone pHuR 195 under low stringency. Hybridization with clone pHuR 98 was highly specific for chromosome 9, even under low stringency. A relationship between chromosomes 9, 15, and the Y chromosome, however, was shown by hybridization with clone pY-3.4A. The chromosomal distribution of the three repetitive DNA clones used in this study, and data from the literature, are in accordance with the distribution of the heterochromatin types characterized by staining with different fluorescent dyes and dye combinations. Furthermore, our sequence data for clones pHuR 98 and pHuR 195 may explain the fluorescent properties on which the cytogenetic classification of the heterochromatin is based.  相似文献   

10.
The enormous potential of in situ hybridization derives from the unique ability of this approach to directly couple cytological and molecular information. In recent years, there has been a surge of success in powerful new applications, resulting from methodologic advances that bring the practical capabilities of this technology closer to its theoretical potential. A major advance has been improvements that enable, with a high degree of reproducibility and efficiency, precise visualization of single sequences within individual metaphase and interphase cells. This has implications for gene mapping, the analysis of nuclear organization, clinical cytogenetics, virology, and studies of gene expression. This article discusses the current state of the art of fluorescence in situ hybridization, with emphasis on applications to human genetics, but including brief discussions on studies of nuclear DNA and RNA organization, and on applications to clinical genetics and virology. Although a review of all of the literature in this field is not possible here, many of the major contributions are summarized along with recent work from our laboratory.  相似文献   

11.
12.
The resolution of fluorescence in situ hybridization techniques (FISH) can be improved using techniques of DNA stretching. The so-called DIRVISH technique has been used to demonstrate the existence of an inversion involving a small chromosomal segment of the long arm of chromosome 14. This inversion was suspected, but not proven, in patients with familial Alzheimer disease. Two-colour FISH using YAC and cosmid probes allowed us to limit the rearranged region around YAC 964e2, which encompasses the Presenilin 1 (PR1) gene. The existence of small-sized inversions within the genome becomes, thus, open to microscope analysis.  相似文献   

13.
In 1964, Gustavsson and Rockborn first described the 1/29 Robertsonian translocation in cattle. Since then, several studies have demonstrated the negative effect of this particular chromosomal rearrangement on the fertility of carrier animals. During the last decade, meiotic segregation patterns have been studied on human males carrying balanced translocations using FISH on decondensed sperm nuclei. In this work, we have applied the 'Sperm-FISH' technique to determine the chromosomal content of spermatozoa from two bulls heterozygous for the 1/29 translocation and one normal bull (control). 5425 and 2702 sperm nuclei were scored, respectively, for the two heterozygous bulls, using whole chromosome painting probes of chromosomes 1 and 29. Very similar proportions of normal (or balanced) spermatozoa resulting from alternate segregation were observed (97.42% and 96.78%). For both heterozygous bulls, the proportions of nullisomic and disomic spermatozoa did not follow the theoretical 1:1 ratio. Indeed, proportions of nullisomic spermatozoa were higher than those of disomic sperma tozoa (1.40% vs 0.09% (bull 1) and 1.29% vs 0.15% (bull 2) for BTA1, and 0.65% vs 0.40% (bull 1) and 1.11% vs 0.63% (bull 2) for BTA29). The average frequencies of disomic and diploid spermatozoa in the normal bull were 0.11% and 0.05%, respectively.  相似文献   

14.
A 340-bp EcoRI fragment of alpha satellite DNA from human chromosome 12 has been isolated and used in molecular cytogenetic and genetic studies. The clone, pSP12-1, detects tandemly repeated 1.4-kb repeat units at the centromeric region of chromosome 12. By fluorescence in situ hybridization, biotinylated pSP12-1 is highly specific for chromosome 12 and has been used to confirm an i(12p) in a case of Pallister-Killian syndrome, both in metaphase spreads and in interphase nuclei. A dominant DNA polymorphism for the centromeric D12Z3 locus is detected with the enzyme TaqI. In addition, a high frequency of D12Z3 array length polymorphisms can be detected using pulsed-field gel electrophoresis. The D12Z3 array has been measured by pulsed-field gel electrophoresis to span approximately 2,250-4,300 kb at the centromeric region of chromosome 12.  相似文献   

15.
Fluorescence in situ hybridization (FISH) using two cosmid probes (41A and P13) from the Miller-Dieker syndrome (MDS) critical region in 17p13.3 was performed in a blinded comparison of three MDS patients with submicroscopic deletions and in four normal relatives used as controls. The controls showed both chromosome 17 homologues labeled in 85%-95% of cells, while each patient showed only one homologue labeled in 75%-80% of cells. Two MDS patients with cryptic translocations were also studied. In one case, a patient and her mother had the same der(17) (p+), but the reciprocal product of the translocation could not be identified in the mother by G-banding (i.e., it was a "half-cryptic" translocation). FISH revealed a 3q;17p translocation. The other case involved a patient with apparently normal karyotype. Because a large molecular deletion was found, a translocation involving two G-negative telomeres (i.e., a "full-cryptic" translocation) was postulated. FISH studies on her father and normal brother showed an 8q;17p translocation. These studies demonstrate that in situ hybridization is an efficient method for deletion detection in Miller-Dieker syndrome. More important, parental studies by FISH on patients demonstrating molecular deletions and a normal karyotype may identify cryptic translocation events, which cannot be detected by other molecular genetic strategies. Similar in situ strategies for deletion detection can be developed for other microdeletion syndromes, such as Prader-Willi/Angelman syndrome or DiGeorge syndrome.  相似文献   

16.
Multiple fluorescence in situ hybridization   总被引:18,自引:0,他引:18  
A method for multiple fluorescence in situ hybridization is described allowing the simultaneous detection of more than three target sequences with only three fluorescent dyes (FITC, TRITC, AMCA), respectively emitting in the green, red, and blue. This procedure is based on the labeling of (DNA) probes with more than one hapten and visualisation in multiple colors. The possibility to detect multiple targets simultaneously is important for prenatal diagnosis and the detection of numerical and/or structural chromosome aberrations in tumor diagnosis. It may form the basis for an in situ hybridization based chromosome banding technique.  相似文献   

17.
Physical mapping of DNA clones by nonisotopic in situ hybridization has greatly facilitated the human genome mapping effort. Here we combine a variety of in situ hybridization techniques that make the physical mapping of DNA clones to mouse chromosomes much easier. Hybridization of probes containing the mouse long interspersed repetitive element to metaphase chromosomes produces a Giemsa-like banding pattern which can be used to identify individual Mus musculus, Mus spretus, and Mus castaneus chromosomes. The DNA binding fluorophore, DAPI, gives quinacrine-like bands that can complement the hybridization banding data. Simultaneous hybridization of a differentially labeled clone of interest with the banding probe allows the assignment of a mouse clone to a specific cytogenetic band. These methods were validated by first mapping four known genes, Cpa, Ly-2, Cck, and Igh-6, on banded chromosomes. Twenty-seven additional clones, including twenty anonymous cosmids, were then mapped in a similar fashion. Known marker clones and fractional length measurements can also provide information about chromosome assignment and clone order without the necessity of recognizing banding patterns. Clones hybridizing to each murine chromosome have been identified, thus providing a panel of marker probes to assist in chromosome identification.  相似文献   

18.
Human and murine chromatin was differentially labeled by hybridization with DNA probes that bind to species-specific satellite DNA. The targets for in situ hybridization were the mouse-specific major or gamma satellite DNA and the human alpha satellite DNA. These sequences typically are localized at or near the chromosome centromeres, and remain their tight localization throughout the cell cycle. DNA probes were synthesized in vitro by primer directed DNA amplification using the polymerase chain reaction. In typical applications like the differentiation of cells derived from chimeric animals or the characterization of chromosomes in somatic cell hybrids, the two DNA probes are differently labeled and detected using label-specific reagents that fluoresce at different wavelengths. The rapid technique for chromatin discrimination described here combines high specificity with unprecedented signal intensity.  相似文献   

19.
The DNA composition and the in situ hybridization of satellite fractions were analysed in the New World camelids llama, alpaca, guanaco and vicuña. In the four camelid forms, it was possible to identify a similar main band DNA and five satellite fractions (I–V) with G+C base contents ranging from 32% to 66%. Satellites II–V from llama were in situ reannealed on chromosomes from the four camelid forms. The results obtained were: (a) the four satellites hybridized with regions of C-banding (centromeric regions of all chromosomes and short arms of some autosomes); (b) in general, homologous hybridizations (llama DNA versus llama chromosomes) were more efficient than heterologous reassociations; there were however three exceptions to this rule (vicuña and alpaca satellite fraction II, chromosome group B; vicuña fraction V, chromosome groups A and B); (c) X chromosomes from the four camelids had satellites III–V but lacked satellite II, (d) no satellite fraction was detected on chromosome Y. The analysis of the in situ hybridization patterns allowed to conclude that most or all C-banded chromosome regions comprise several satellite DNA fractions. It is, moreover, proposed that there is an ample interspecies variation in the number of chromosomes that cross-react with a given satellite fraction. Our data give further support to the close genomic kinship of New World camelids.  相似文献   

20.
A Cuadrado  N Jouve  C Ceoloni 《Génome》1995,38(6):1061-1069
The molecular characterization of heterochromatin in six lines of rye has been performed using fluorescence in situ hybridization (FISH). The highly repetitive rye DNA sequences pSc 119.2, pSc74, and pSc34, and the probes pTa71 and pSc794 containing the 25S-5.8S-18S rDNA (NOR) and the 5S rDNA multigene families, respectively, were used. This allowed the individual identification of all seven rye chromosomes and most chromosome arms in all lines. All varieties showed similar but not identical patterns. A standard in situ hybridization map was constructed following the nomenclature system recommended for C-bands. All FISH sites observed appeared to correspond well with C-band locations, but not all C-banding sites coincided with hybridization sites of the repetitive DNA probes used. Quantitative and qualitative differences between different varieties were found for in situ hybridization response at corresponding sites. Variation between plants and even between homologous chromosomes of the same plant was found in open-pollinated lines. In inbred lines, the in situ pattern of the homologues was practically identical and no variation between plants was detected. The observed quantitative and qualitative differences are consistent with a corresponding variation for C-bands detected both within and between cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号