首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Clostridium difficile toxins A and B (TcdA and TcdB), considered to be essential for C. difficile infection, affect the morphology of several cell types with different potencies and timing. However, morphological changes over various time scales are poorly characterized. The toxins’ glucosyltransferase domains are critical to their deleterious effects, and cell responses to glucosyltransferase-independent activities are incompletely understood. By tracking morphological changes of multiple cell types to C. difficile toxins with high temporal resolution, cellular responses to TcdA, TcdB, and a glucosyltransferase-deficient TcdB (gdTcdB) are elucidated.

Results

Human umbilical vein endothelial cells, J774 macrophage-like cells, and four epithelial cell lines (HCT8, T84, CHO, and immortalized mouse cecal epithelial cells) were treated with TcdA, TcdB, gdTcdB. Impedance across cell cultures was measured to track changes in cell morphology. Metrics from impedance data, developed to quantify rapid and long-lasting responses, produced standard curves with wide dynamic ranges that defined cell line sensitivities. Except for T84 cells, all cell lines were most sensitive to TcdB. J774 macrophages stretched and increased in size in response to TcdA and TcdB but not gdTcdB. High concentrations of TcdB and gdTcdB (>10 ng/ml) greatly reduced macrophage viability. In HCT8 cells, gdTcdB did not induce a rapid cytopathic effect, yet it delayed TcdA and TcdB’s rapid effects. gdTcdB did not clearly delay TcdA or TcdB’s toxin-induced effects on macrophages.

Conclusions

Epithelial and endothelial cells have similar responses to toxins yet differ in timing and degree. Relative potencies of TcdA and TcdB in mouse epithelial cells in vitro do not correlate with potencies in vivo. TcdB requires glucosyltransferase activity to cause macrophages to spread, but cell death from high TcdB concentrations is glucosyltransferase-independent. Competition experiments with gdTcdB in epithelial cells confirm common TcdA and TcdB mechanisms, yet different responses of macrophages to TcdA and TcdB suggest different, additional mechanisms or targets in these cells. This first-time, precise quantification of the response of multiple cell lines to TcdA and TcdB provides a comparative framework for delineating the roles of different cell types and toxin-host interactions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0361-4) contains supplementary material, which is available to authorized users.  相似文献   

2.
Clostridium?difficile toxin?A (TcdA) is a member of the large clostridial toxin family, and is responsible, together with C.?difficile toxin?B (TcdB), for many clinical symptoms during human infections. Like other large clostridial toxins, TcdA catalyzes the glucosylation of GTPases, and is able to inactivate small GTPases within the host cell. Here, we report the crystal structures of the TcdA glucosyltransferase domain (TcdA-GT) in the apo form and in the presence of Mn(2+) and hydrolyzed UDP-glucose. These structures, together with the recently reported crystal structure of TcdA-GT bound to UDP-glucose, provide a detailed understanding of the conformational changes of TcdA that occur during the catalytic cycle. Indeed, we present a new intermediate conformation of a so-called 'lid' loop (residues?510-522 in TcdA), concomitant with the absence of glucose in the catalytic domain. The recombinant TcdA was expressed in Brevibacillus in the inactive apo form. High thermal stability of wild-type TcdA was observed only after the addition of both Mn(2+) and UDP-glucose. The glucosylhydrolase activity, which is readily restored after reconstitution with both these cofactors, was similar to that reported for TcdB. Interestingly, we found that ammonium, like K(+) , is able to activate the UDP-glucose hydrolase activities of TcdA. Consequently, the presence of ammonium in the crystallization buffer enabled us to obtain the first crystal structure of TcdA-GT bound to the hydrolysis product UDP. Database ??Coordinates of apo-TcdA-GT and Mn(2+) -UDP-TcdA-GT are available in the Protein Data Bank under the accession numbers 4DMV and 4DMW, respectively.  相似文献   

3.
TcdA and TcdB are the main pathogenicity factors of Clostridium difficile‐associated diseases. Both toxins inhibit Rho GTPases, and consequently, apoptosis is induced in the affected cells. We found that TcdB at higher concentrations exhibits cytotoxic effects that are independent on Rho glucosylation. TcdB and the glucosyltransferase‐deficient mutant TcdB D286/288N induced pyknotic cell death which was associated with chromatin condensation and reduced H3 phosphorylation. Affected cells showed ballooning of the nuclear envelope and loss of the integrity of the plasma membrane. Furthermore, pyknotic cells were positively stained with dihydroethidium indicating production of reactive oxygen species. In line with this, pyknosis was reduced by apocynin, an inhibitor of the NADPH oxidase. Bafilomycin A1 prevented cytotoxic effects showing that the newly observed pyknosis depends on intracellular action of TcdB rather than on a receptor‐mediated effect. Blister formation and chromatin condensation was specifically induced by the glucosyltransferase domain of TcdB from strain VPI10473 since neither TcdBF from cdi1470 nor the chimera of TcdB harbouring the glucosyltransferase domain of TcdBF was able to induce these effects. In summary, TcdB induces two different and independent phenotypes: (i) cell rounding due to glucosylation of Rho GTPases and (ii) shrinkage of cells and nuclear blister induced by the high concentrations of TcdB independent of Rho glucosylation.  相似文献   

4.
Toxin A (TcdA) and Toxin B (TcdB) are the major pathogenicity factors of the Clostridium difficile-associated diarrhoea (CDAD). The single-chained protein toxins enter their target cells by receptor-mediated endocytosis. New data show the critical role of auto-catalytic processing for target cell entry. Inside the cell, the toxins mono-glucosylate and thereby inactivate low molecular mass GTP-binding proteins of the Rho subfamily. Toxin-treated cells respond to RhoA glucosylation with up-regulation and activation of the pro-apoptotic Rho family protein RhoB. These data reinforce the critical role of the glucosyltransferase activity for programmed cell death and show that TcdA and TcdB, generally classified as broad-spectrum inhibitors of Rho proteins, are also capable of activating Rho proteins.  相似文献   

5.
Clostridium difficile is the most common cause of antibiotic-associated nosocomial infection in the United States. C. difficile secretes two homologous toxins, TcdA and TcdB, which are responsible for the symptoms of C. difficile associated disease. The mechanism of toxin action includes an autoprocessing event where a cysteine protease domain (CPD) releases a glucosyltransferase domain (GTD) into the cytosol. The GTD acts to modify and inactivate Rho-family GTPases. The presumed importance of autoprocessing in toxicity, and the apparent specificity of the CPD active site make it, potentially, an attractive target for small molecule drug discovery. In the course of exploring this potential, we have discovered that both wild-type TcdB and TcdB mutants with impaired autoprocessing or glucosyltransferase activities are able to induce rapid, necrotic cell death in HeLa and Caco-2 epithelial cell lines. The concentrations required to induce this phenotype correlate with pathology in a porcine colonic explant model of epithelial damage. We conclude that autoprocessing and GTD release is not required for epithelial cell necrosis and that targeting the autoprocessing activity of TcdB for the development of novel therapeutics will not prevent the colonic tissue damage that occurs in C. difficile – associated disease.  相似文献   

6.
The pathogenicity of Clostridium difficile is primarily linked to secretion of the intracellular acting toxins A (TcdA) and B (TcdB) which monoglucosylate and thereby inactivate Rho GTPases of host cells. Although the molecular mode of action of TcdA and TcdB is well understood, far less is known about toxin binding and uptake. It is acknowledged that the C-terminally combined repetitive oligopeptides (CROPs) of the toxins function as receptor binding domain. The current study evaluates the role of the CROP domain with respect to functionality of TcdA and TcdB. Therefore, we generated truncated TcdA devoid of the CROPs (TcdA(1-1874)) and found that this mutant was still cytopathic. However, TcdA(1-1874) possesses about 5 to 10-fold less potency towards 3T3 and HT29 cells compared to the full length toxin. Interestingly, CHO-C6 cells even showed almost identical susceptibility towards truncated and full length TcdA concerning Rac1 glucosylation or cell rounding, respectively. FACS and Western blot analyses elucidated these differences and revealed a correlation between CROP-binding to the cell surface and toxin potency. These findings refute the accepted opinion of solely CROP-mediated toxin internalization. Competition experiments demonstrated that presence neither of TcdA CROPs nor of full length TcdA reduced binding of truncated TcdA(1-1874) to HT29 cells. We assume that toxin uptake might additionally occur through alternative receptor structures and/or other associated endocytotic pathways. The second assumption was substantiated by TER measurements showing that basolaterally applied TcdA(1-1874) exhibits considerably higher cytotoxic potency than apically applied mutant or even full length TcdA, the latter being almost independent of the side of application. Thus, different routes for cellular uptake might enable the toxins to enter a broader repertoire of cell types leading to the observed multifarious pathogenesis of C. difficile.  相似文献   

7.
Large clostridial glucosylating toxins (LCGTs) are produced by toxigenic strains of Clostridium difficile, Clostridium perfringens, Clostridium novyi and Clostridium sordellii. While most C. sordellii strains solely produce lethal toxin (TcsL), C. sordellii strain VPI9048 co‐produces both hemorrhagic toxin (TcsH) and TcsL. Here, the sequences of TcsH‐9048 and TcsL‐9048 are provided, showing that both toxins retain conserved LCGT features and that TcsL and TcsH are highly related to Toxin A (TcdA) and Toxin B (TcdB) from C. difficile strain VPI10463. The substrate profile of the toxins was investigated with recombinant LCGT transferase domains (rN) and a wide panel of small GTPases. rN‐TcsH‐9048 and rN‐TcdA‐10463 glucosylated preferably Rho‐GTPases but also Ras‐GTPases to some extent. In this respect, rN‐TcsH‐9048 and rN‐TcdA‐10463 differ from the respective full‐length TcsH‐9048 and TcdA‐10463, which exclusively glucosylate Rho‐GTPases. rN‐TcsL‐9048 and full length TcsL‐9048 glucosylate both Rho‐ and Ras‐GTPases, whereas rN‐TcdB‐10463 and full length TcdB‐10463 exclusively glucosylate Rho‐GTPases. Vero cells treated with full length TcsH‐9048 or TcdA‐10463 also showed glucosylation of Ras, albeit to a lower extent than of Rho‐GTPases. Thus, in vitro analysis of substrate spectra using recombinant transferase domains corresponding to the auto‐proteolytically cleaved domains, predicts more precisely the in vivo substrates than the full length toxins. Except for TcdB‐1470, all LCGTs evoked increased expression of the small GTPase RhoB, which exhibited cytoprotective activity in cells treated with TcsL isoforms, but pro‐apoptotic activity in cells treated with TcdA, TcdB, and TcsH. All LCGTs induced a rapid dephosphorylation of pY118‐paxillin and of pS144/141‐PAK1/2 prior to actin filament depolymerization indicating that disassembly of focal adhesions is an early event leading to the disorganization of the actin cytoskeleton.  相似文献   

8.
Clostridium difficile is a nosocomial bacterial pathogen causing antibiotic-associated diarrhea and fatal pseudomembranous colitis. Key virulence factors are toxin A and toxin B (TcdB), two highly related toxins that are members of the large clostridial toxin family. These large multifunctional proteins disrupt cell function using a glucosyltransferase domain that is translocated into the cytosol after vesicular internalization of intact holotoxin. Although substantial information about the biochemical mechanisms of intoxication exists, research has been hampered by limited structural information, particularly of intact holotoxin. Here, we used small-angle X-ray scattering (SAXS) methods to obtain an ab initio low-resolution structure of native TcdB, which demonstrated that this molecule is monomeric in solution and possesses a highly asymmetric shape with a maximum dimension of ∼ 275 Å. Combining this SAXS information with crystallographic or modeled structures of individual functional domains of TcdB reveals for the first time that the three-dimensional structure of TcdB is organized into four distinct structural domains. Structures of the N-terminal glucosyltransferase, the cysteine protease, and the C-terminal repeat region can be aligned within three domains of the SAXS envelope. A fourth domain, predicted to be involved in the translocation of the glucosyltransferase, appears as a large solvent-exposed protrusion. Knowledge of the shapes and relative orientations of toxin domains provides new insight into defining functional domain boundaries and provides a framework for understanding how potential intra-domain interactions enable conformational changes to propagate between domains to facilitate intoxication processes.  相似文献   

9.
Toxin A and Toxin B (TcdA/TcdB) are large glucosyltransferases produced by Clostridium difficile. TcdB but not TcdA induces reactive oxygen species‐mediated early cell death (ECD) when applied at high concentrations. We found that nonglucosylated Rac1 is essential for induction of ECD since inhibition of Rac1 impedes this effect. ECD only occurs when TcdB is rapidly endocytosed. This was shown by generation of chimeras using the trunk of TcdB from a hypervirulent strain. TcdB from hypervirulent strain has been described to translocate from endosomes at higher pH values and thus, meaning faster than reference type TcdB. Accordingly, intracellular delivery of the glucosyltransferase domain of reference TcdB by the trunk of TcdB from hypervirulent strain increased ECD. Furthermore, proton transporters such as sodium/proton exchanger (NHE) or the ClC‐5 anion/proton exchanger, both of which contribute to endosomal acidification, also affected cytotoxic potency of TcdB: Specific inhibition of NHE reduced cytotoxicity, whereas transfection of cells with the endosomal anion/proton exchanger ClC‐5 increased cytotoxicity of TcdB. Our data suggest that both the uptake rate of TcdB into the cytosol and the status of nonglucosylated Rac1 are key determinants that are decisive for whether ECD or delayed apoptosis is triggered.  相似文献   

10.
Clostridioides difficile infection (CDI) is the leading cause of nosocomial diarrhea and pseudomembranous colitis in the USA. In addition to these symptoms, patients with CDI can develop severe inflammation and tissue damage, resulting in life-threatening toxic megacolon. CDI is mediated by two large homologous protein toxins, TcdA and TcdB, that bind and hijack receptors to enter host cells where they use glucosyltransferase (GT) enzymes to inactivate Rho family GTPases. GT-dependent intoxication elicits cytopathic changes, cytokine production, and apoptosis. At higher concentrations TcdB induces GT-independent necrosis in cells and tissue by stimulating production of reactive oxygen species via recruitment of the NADPH oxidase complex. Although GT-independent necrosis has been observed in vitro, the relevance of this mechanism during CDI has remained an outstanding question in the field. In this study we generated novel C. difficile toxin mutants in the hypervirulent BI/NAP1/PCR-ribotype 027 R20291 strain to test the hypothesis that GT-independent epithelial damage occurs during CDI. Using the mouse model of CDI, we observed that epithelial damage occurs through a GT-independent process that does not involve immune cell influx. The GT-activity of either toxin was sufficient to cause severe edema and inflammation, yet GT activity of both toxins was necessary to produce severe watery diarrhea. These results demonstrate that both TcdA and TcdB contribute to disease pathogenesis when present. Further, while inactivating GT activity of C. difficile toxins may suppress diarrhea and deleterious GT-dependent immune responses, the potential of severe GT-independent epithelial damage merits consideration when developing toxin-based therapeutics against CDI.  相似文献   

11.
The most potent toxins secreted by pathogenic bacteria contain enzymatic moieties that must reach the cytosol of target cells to exert their full toxicity. Toxins such as anthrax, diphtheria, and botulinum toxin all use three well-defined functional domains to intoxicate cells: a receptor-binding moiety that triggers endocytosis into acidified vesicles by binding to a specific host-cell receptor, a translocation domain that forms pores across the endosomal membrane in response to acidic pH, and an enzyme that translocates through these pores to catalytically inactivate an essential host cytosolic substrate. The homologous toxins A (TcdA) and Toxin B (TcdB) secreted by Clostridium difficile are large enzyme-containing toxins that for many years have eluded characterization. The cell-surface receptors for these toxins, the non-classical nature of the pores that they form in membranes, and mechanism of translocation have remained undefined, exacerbated, in part, by the lack of any structural information for the central ~1000 amino acid translocation domain. Recent advances in the identification of receptors for TcdB, high-resolution structural information for the translocation domain, and a model for the pore have begun to shed light on the mode-of-action of these toxins. Here, we will review TcdA/TcdB uptake and entry into mammalian cells, with focus on receptor binding, endocytosis, pore formation, and translocation. We will highlight how these toxins diverge from classical models of translocating toxins, and offer our perspective on key unanswered questions for TcdA/TcdB binding and entry into mammalian cells.  相似文献   

12.
Clostridium difficile may induce antibiotic‐associated diarrhoea and, in severe cases, pseudomembranous colitis characterized by tremendous neutrophil infiltration. All symptoms are caused by two exotoxins: TcdA and TcdB. We describe here the activation of isolated human blood neutrophils by TcdB and, moreover, by toxin fragments generated by limited proteolytical digestion. Kinetics and profiles of TcdB‐induced rise in intracellular‐free Ca2+ and reactive oxygen species production were similar to that induced by fMLF, which activates the formyl peptide receptor (FPR) recognizing formylated bacterial peptide sequences. Transfection assays with the FPR‐1 isoform hFPR26 in HEK293 cells, heterologous desensitization experiments and FPR inhibition via cyclosporine H strongly suggest activation of cells via FPR‐1. Domain analyses revealed that the N‐terminal glucosyltransferase domain of TcdB is a potent activator of FPR pointing towards an additional mechanism that might contribute to pathogenesis. This pro‐inflammatory ligand effect can be triggered even by cleaved and, thus, non‐cytotoxic toxin. In summary, we report (i) a ligand effect on neutrophils as completely new molecular mode of action, (ii) pathogenic potential of truncated or proteolytically cleaved ‘non‐cytotoxic’ fragments and (iii) an interaction of the N‐terminal glucosyltransferase domain instead of the C‐terminal receptor binding domain of TcdB with target cells.  相似文献   

13.
Rupnik M  Grabnar M  Geric B 《Anaerobe》2003,9(6):289-294
Clostridium difficile produces three toxins, TcdA, TcdB and CDT. TcdA and TcdB are single-stranded molecules acting as glucosyltransferases specific for small GTPases. CDT is an actin specific ADP-ribosylating binary toxin characteristically composed of two independent components, enzymatic CDTa (48 kDa) and binding CDTb (99 kDa). The cdtA and cdtB genes were sequenced in two CDT-positive strains of C. difficile (CD 196 and 8864) and at least two CDT-negative strains with truncated form of binary toxin genes are known (VPI 10463 and C. difficile genome strain 630). The prevalence of binary toxin producing strains is estimated to be from 1.6% to 5.5%, although a much higher proportion has been reported in some studies. The role of the binary toxin as an additional virulence factor is discussed.  相似文献   

14.
Clostridium difficile toxin B (TcdB) intoxicates target cells by glucosylating Rho GTPases. TcdB (269 kDa) consists of at least 4 functional domains including a glucosyltransferase domain (GTD), a cysteine protease domain (CPD), a translocation domain (TD), and a receptor binding domain (RBD). The function and molecular mode of action of the TD, which is the largest segment of TcdB and comprises nearly 50% of the protein, remain largely unknown. Here we show that a 97-amino-acid segment (AA1756 – 1852, designated as ?97 or D97), located in the C-terminus of the TD and adjacent to the RBD, is essential for the cellular activity of TcdB. Deletion of this segment in TcdB (designated as TxB-D97), did not adversely alter toxin enzymatic activities or its cellular binding and uptake capacity. TxB-D97 bound to and entered cells in a manner similar to TcdB holotoxin. Both wild type and mutant toxins released their GTDs similarly in the presence of inositol hexakisphosphate (InsP6), and showed a similar glucosyltransferase activity in a cell-free glucosylating assay. Despite these similarities, the cytotoxic activity of TxB-D97 was reduced by more than 5 logs compared to wild type toxin, supported by the inability of TxB-D97 to glucosylate Rac1 of target cells. Moreover, the mutant toxin failed to elicit tumor necrosis factor alpha (TNF-α) in macrophages, a process dependent on the glucosyltransferase activity of the toxin. Cellular fractionation of toxin-exposed cells revealed that TxB-D97 was unable to efficiently release the GTD into cytosol. Thereby, we conclude the 97-amino-acid region of the TD C-terminus of TcdB adjacent to the RBD, is essential for the toxicity of TcdB.  相似文献   

15.
Genomic DNA from ribotype-01 and -17 Clostridium difficile strains was used for amplification of the sequences encoding the carboxy-terminal domain of toxins A (TcdA) and B (TcdB). The deduced C-terminal TcdB ribotype-01 and -17 domains share 99.5% amino acid sequence identity while TcdA ribotype-17 comprises a 607 amino acid deletion compared to TcdA-01. When compared to previously sequenced C. difficile toxins, 99.3% amino acid identity was found between TcdA-01 and TcdA from strain VPI10643 and 98.8% identity between TcdA-17 and TcdA from strain F-1470. The obtained sequences were fused in 3' to a sequence encoding a hexahistidine tag and cloned into an Escherichia coli expression vector. The recombinant proteins were expressed in E. coli and purified using single-step metal-chelate chromatography. The recombinant carboxy-terminal domain of TcdA-01 was purified from the soluble E. coli lysate fraction whereas TcdA-17 and TcdB-17 carboxy-terminal domains were purified from inclusion bodies. At least 40 mg of each protein was purified per liter of bacterial culture. The recombinant toxin domains were detected specifically by Western blot and ELISA with antibodies against native C. difficile toxins. This study demonstrated that the carboxy-terminal domains of TcdA and TcdB can be produced using an E. coli expression system and easily purified. These recombinant, stable, and non-toxic proteins provide a convenient source for use in the diagnosis of C. difficile infections, instead of native toxins, as controls and calibrators in immunoassay kits and to obtain specific monoclonal antibodies.  相似文献   

16.
Toxin A (TcdA) and toxin B (TcdB) are the major virulence factors of Clostridium difficile-associated diarrhoea (CDAD). TcdA and TcdB mono-glucosylate small GTPases of the Rho family, thereby causing actin re-organisation in colonocytes, resulting in the loss of colonic barrier function. The hydrophilic bile acid tauroursodeoxycholic acid (TUDCA) is an approved drug for the treatment of cholestasis and biliary cirrhosis. In this study, TUDCA-induced activation of Akt1 is presented to increase cellular levels of pS71-Rac1/Cdc42 in human hepatocarcinoma (HepG2) cells, showing for the first time that bile acid signalling affects the activity of Rho proteins. Rac1/Cdc42 phosphorylation, in turn, protects Rac1/Cdc42 from TcdB-catalysed glucosylation and reduces the TcdB-induced cytopathic effects in HepG2 cells. The results of this study indicate that TUDCA may prove useful as a therapeutic agent for the treatment of CDAD.  相似文献   

17.
The toxin complex (tc) genes of bacteria comprise a large and growing family whose mode of action remains obscure. In the insect pathogen Photorhabdus, tc genes encode high molecular weight insecticidal toxins with oral activity against caterpillar pests. One protein, TcdA, has recently been expressed in transgenic plants and shown to confer insect resistance. These toxins therefore represent alternatives to toxins from Bacillus thuringiensis (Bt) for deployment in transgenic crops. Levels of TcdA expression in transgenic plants were, however, low and the full toxicity associated with the native toxin was not reconstituted. Here we show that increased activity of the toxin TcdA1 requires potentiation by either of two pairs of gene products, TcdB1 and TccC1 or TcdB2 and TccC3. Moreover, these same pairs of proteins can also cross-potentiate a second toxin, TcaA1B1. To elucidate the likely functional domains present in these large proteins, we expressed fragments of each 'toxin' or 'potentiator' gene within mammalian cells. Several domains produced abnormal cellular morphologies leading to cell death, while others showed specific phenotypes such as nuclear translocation. Our results prove that the Tc toxins are complex proteins with multiple functional domains. They also show that both toxin genes and their potentiator pairs will need to be expressed to reconstitute full activity in insect-resistant transgenic plants. Moreover, they suggest that the same potentiator pair will be able to cross-potentiate more than one toxin in a single plant.  相似文献   

18.
Clostridium difficile is a spore-forming anaerobic pathogen, commonly associated with severe diarrhea or life-threatening pseudomembraneous colitis. Its main virulence factors are the single-chain, multi-domain toxin A (TcdA) and B (TcdB). Their glucosyltransferase domain selectively inactivates Rho proteins leading to a reorganization of the cytoskeleton. To study exclusively glucosyltransferase-dependent molecular effects of TcdA, human colonic cells (Caco-2) were treated with recombinant wild type TcdA and the glucosyltransferase deficient variant of the toxin, TcdA(gd) for 24h. Changes in the protein pattern of the colonic cells were investigated by 2-D DIGE and LCMS/MS methodology combined with detailed proteome mapping. gdTcdA did not induce any detectable significant changes in the protein pattern. Comparing TcdA-treated cells with a control group revealed seven spots of higher and two of lower intensity (p<0.05). Three proteins are involved in the assembly of the cytoskeleton (β-actin, ezrin, and DPYL2) and four are involved in metabolism and/or oxidative stress response (ubiquitin, DHE3, MCCB, FABPL) and two in regulatory processes (FUBP1, AL1A1). These findings correlate well to known effects of TcdA like the reorganization of the cytoskeleton and stress the importance of Rho protein glucosylation for the pathogenic effects of TcdA.  相似文献   

19.
Clostridium difficile toxinotypes are groups of strains defined by changes in the PaLoc region encoding two main virulence factors: toxins TcdA and TcdB. Currently, 24 variant toxinotypes (I-XXIV) are known, in addition to toxinotype 0 strains, which contain a PaLoc identical to the reference strain VPI 10463. Variant toxinotypes can also differ from toxinotype 0 strains in their toxin production pattern. The most-studied variant strains are TcdA-, TcdB+ (A-B+) strains and binary toxin CDT-producing strains. Variations in toxin genes are also conserved on the protein level and variant toxins can differ in size, antibody reactivity, pattern of intracellular targets (small GTPases) and consequently in their effects on the cell. Toxinotypes do not correlate with particular forms of disease or patient populations, but some toxinotypes (IIIb and VIII) are currently associated with disease of increased severity and outbreaks worldwide. Variant toxinotypes are very common in animal hosts and can represent from 40% to 100% of all isolates. Among human isolates, variant toxinotypes usually represent up to 10% of strains but their prevalence is increasing.  相似文献   

20.
Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号