首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 949 毫秒
1.
The endoplasmic reticulum (ER) quality control factor EDEM1 associates with a number of ER proteins and ER-associated degradation (ERAD) substrates; however, an understanding of its role in ERAD is unclear. The early maturation events for EDEM1 including signal sequence cleavage and glycosylation were analyzed, and their relationship to the function of EDEM1 was determined. EDEM1 has five N-linked glycosylation sites with the most C-terminal site recognized poorly cotranslationally, resulting in the accumulation of EDEM1 containing four or five glycans. The fifth site was modified post-translationally when bypassed cotranslationally. Signal sequence cleavage of EDEM1 was found to be a slow and inefficient process. Signal sequence cleavage produced a soluble form of EDEM1 that efficiently associated with the oxidoreductase ERdj5 and most effectively accelerated the turnover of a soluble ERAD substrate. In contrast, a type-II membrane form of EDEM1 was generated when the signal sequence was uncleaved, creating an N-terminal transmembrane segment. The membrane form of EDEM1 efficiently associated with the ER membrane protein SEL1L and accelerated the turnover of a membrane-associated ERAD substrate. Together, these results demonstrated that signal sequence cleavage functionally regulated the association of EDEM1-soluble and membrane-integrated isoforms with distinct ERAD machinery and substrates.  相似文献   

2.
The activity of Hsp70 proteins is regulated by accessory proteins, which include members of the DnaJ-like protein family. Characterized by the presence of a highly conserved 70-amino acid J domain, DnaJ homologues activate the ATPase activity of Hsp70 proteins and stabilize their interaction with unfolded substrates. DnaJ homologues have been identified in most organelles where they are involved in nearly all aspects of protein synthesis and folding. Within the endoplasmic reticulum (ER), DnaJ homologues have also been shown to assist in the translocation, secretion, retro-translocation, and ER-associated degradation (ERAD) of secretory pathway proteins. By using bioinformatic methods, we identified a novel mammalian DnaJ homologue, ERdj4. It is the first ER-localized type II DnaJ homologue to be reported. The signal sequence of ERdj4 remains uncleaved and serves as a membrane anchor, orienting its J domain into the ER lumen. ERdj4 co-localized with GRP94 in the ER and associated with BiP in vivo when they were co-expressed in COS-1 cells. In vitro experiments demonstrated that the J domain of ERdj4 stimulated the ATPase activity of BiP in a concentration-dependent manner. However, mutation of the hallmark tripeptide HPD (His --> Gln) in the J domain totally abolished this activation. ERdj4 mRNA expression was detected in all human tissues examined but showed the highest level of the expression in the liver, kidney, and placenta. We found that ERdj4 was highly induced at both the mRNA and protein level in response to ER stress, indicating that this protein might be involved in either protein folding or ER-associated degradation.  相似文献   

3.
Membrane and secretory proteins fold in the endoplasmic reticulum (ER), and misfolded proteins may be retained and targeted for ER-associated protein degradation (ERAD). To elucidate the mechanism by which an integral membrane protein in the ER is degraded, we studied the fate of the cystic fibrosis transmembrane conductance regulator (CFTR) in the yeast Saccharomyces cerevisiae. Our data indicate that CFTR resides in the ER and is stabilized in strains defective for proteasome activity or deleted for the ubiquitin-conjugating enzymes Ubc6p and Ubc7p, thus demonstrating that CFTR is a bona fide ERAD substrate in yeast. We also found that heat shock protein 70 (Hsp70), although not required for the degradation of soluble lumenal ERAD substrates, is required to facilitate CFTR turnover. Conversely, calnexin and binding protein (BiP), which are required for the proteolysis of ER lumenal proteins in both yeast and mammals, are dispensable for the degradation of CFTR, suggesting unique mechanisms for the disposal of at least some soluble and integral membrane ERAD substrates in yeast.  相似文献   

4.
5.
ER-associated protein degradation (ERAD) is a protein quality control system of ER, which eliminates misfolded proteins by proteasome-dependent degradation and ensures export of only properly folded proteins from ER. Herp, an ER membrane protein upregulated by ER stress, is implicated in regulation of ERAD. In the present study, we show that Herp interacts with members of the ubiquilin family, which function as a shuttle factor to deliver ubiquitinated substrates to the proteasome for degradation. Knockdown of ubiquilin expression by small interfering RNA stabilized the ERAD substrate CD3δ, whereas it did not alter or increased degradation of non-ERAD substrates tested. CD3δ was stabilized by overexpressed Herp mutants which were capable of binding to ubiquilins but were impaired in ER membrane targeting by deletion of the transmembrane domain. Our data suggest that Herp binding to ubiquilin proteins plays an important role in the ERAD pathway and that ubiquilins are specifically involved in degradation of only a subset of ubiquitinated targets, including Herp-dependent ERAD substrates.  相似文献   

6.
The folding and assembly of proteins in the endoplasmic reticulum (ER) lumen and membrane are monitored by ER quality control. Misfolded or unassembled proteins are retained in the ER and, if they cannot fold or assemble correctly, ultimately undergo ER-associated degradation (ERAD) mediated by the ubiquitin-proteasome system. Whereas luminal and integral membrane ERAD substrates both require the proteasome for their degradation, the ER quality control machinery for these two classes of proteins likely differs because of their distinct topologies. Here we establish the requirements for the ERAD of Ste6p*, a multispanning membrane protein with a cytosolic mutation, and compare them with those for mutant form of carboxypeptidase Y (CPY*), a soluble luminal protein. We show that turnover of Ste6p* is dependent on the ubiquitin-protein isopeptide ligase Doa10p and is largely independent of the ubiquitin-protein isopeptide ligase Hrd1p/Der3p, whereas the opposite is true for CPY*. Furthermore, the cytosolic Hsp70 chaperone Ssa1p and the Hsp40 co-chaperones Ydj1p and Hlj1p are important in ERAD of Ste6p*, whereas the ER luminal chaperone Kar2p is dispensable, again opposite their roles in CPY* turnover. Finally, degradation of Ste6p*, unlike CPY*, does not appear to require the Sec61p translocon pore but, like CPY*, could depend on the Sec61p homologue Ssh1p. The ERAD pathways for Ste6p* and CPY* converge at a post-ubiquitination, pre-proteasome step, as both require the ATPase Cdc48p. Our results demonstrate that ERAD of Ste6p* employs distinct machinery from that of the soluble luminal substrate CPY* and that Ste6p* is a valuable model substrate to dissect the cellular machinery required for the ERAD of multispanning membrane proteins with a cytosolic mutation.  相似文献   

7.
During endoplasmic reticulum (ER)–associated degradation (ERAD), terminally misfolded proteins are retrotranslocated from the ER to the cytosol and degraded by the ubiquitin-proteasome system. Misfolded glycoproteins are recognized by calnexin and transferred to EDEM1, followed by the ER disulfide reductase ERdj5 and the BiP complex. The mechanisms involved in ERAD of nonglycoproteins, however, are poorly understood. Here we show that nonglycoprotein substrates are captured by BiP and then transferred to ERdj5 without going through the calnexin/EDEM1 pathway; after cleavage of disulfide bonds by ERdj5, the nonglycoproteins are transferred to the ERAD scaffold protein SEL1L by the aid of BiP for dislocation into the cytosol. When glucose trimming of the N-glycan groups of the substrates is inhibited, glycoproteins are also targeted to the nonglycoprotein ERAD pathway. These results indicate that two distinct pathways for ERAD of glycoproteins and nonglycoproteins exist in mammalian cells, and these pathways are interchangeable under ER stress conditions.  相似文献   

8.
ER-associated degradation (ERAD) is an ER quality-control process that eliminates terminally misfolded proteins. ERdj5 was recently discovered to be a key ER-resident PDI family member protein that accelerates ERAD by reducing incorrect disulfide bonds in misfolded glycoproteins recognized by EDEM1. We here solved the crystal structure of full-length ERdj5, thereby revealing that ERdj5 contains the N-terminal J domain and six tandem thioredoxin domains that can be divided into the N- and C-terminal clusters. Our systematic biochemical analyses indicated that two thioredoxin domains that constitute the C-terminal cluster form the highly reducing platform that interacts with EDEM1 and reduces EDEM1-recruited substrates, leading to their facilitated degradation. The pulse-chase experiment further provided direct evidence for the sequential movement of an ERAD substrate from calnexin to the downstream EDEM1-ERdj5 complex, and then to the retrotranslocation channel, probably through BiP. We present a detailed molecular view of how ERdj5 mediates ERAD in concert with EDEM1.  相似文献   

9.
Secreted proteins are synthesized at the endoplasmic reticulum (ER), and a quality control mechanism in the ER is essential to maintain secretory pathway homeostasis. Newly synthesized soluble and integral membrane secreted proteins fold into their native conformations with the aid of ER molecular chaperones before they are transported to post-ER compartments. However, terminally mis-folded proteins may be retained in the ER and degraded by a process called ER-associated degradation (ERAD). Recent studies using yeast have shown that molecular chaperones both in the ER and in the cytosol play key roles during the ERAD of mis-folded proteins. One important role for chaperones during ERAD is to prevent substrate protein aggregation. Substrate selection is another important role for molecular chaperones during ERAD.  相似文献   

10.
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a quality control system that removes misfolded proteins from the ER. ERAD substrates are channelled from the ER via a proteinacious pore to the cytosolic ubiquitin-proteasome system - a process involving dedicated ubiquitin ligases and the chaperone-like AAA ATPase Cdc48 (also known as p97). How the activities of these proteins are coupled remains unclear. Here we show that the UBX domain protein Ubx2 is an integral ER membrane protein that recruits Cdc48 to the ER. Moreover, Ubx2 mediates binding of Cdc48 to the ubiquitin ligases Hrd1 and Doa10, and to ERAD substrates. In addition, Ubx2 and Cdc48 interact with Der1 and Dfm1, yeast homologues of the putative dislocation pore protein Derlin-1 (refs 11-13). Lack of Ubx2 causes defects in ERAD that are exacerbated under stress conditions. These findings are consistent with a model in which Ubx2 coordinates the assembly of a highly efficient ERAD machinery at the ER membrane.  相似文献   

11.
Secretory and membrane proteins that fail to fold in the endoplasmic reticulum (ER) are retained and may be sorted for ER-associated degradation (ERAD). During ERAD, ER-associated components such as molecular chaperones and lectins recognize folding intermediates and specific oligosaccharyl modifications on ERAD substrates. Substrates selected for ERAD are then targeted for ubiquitin- and proteasome-mediated degradation. Because the catalytic steps of the ubiquitin–proteasome system reside in the cytoplasm, soluble ERAD substrates that reside in the ER lumen must be retrotranslocated back to the cytoplasm prior to degradation. In contrast, it has been less clear how polytopic, integral membrane substrates are delivered to enzymes required for ubiquitin conjugation and to the proteasome. In this review, we discuss recent studies addressing how ERAD substrates are recognized, ubiquitinated and delivered to the proteasome and then survey current views of how soluble and integral membrane substrates may be retrotranslocated.  相似文献   

12.
Endoplasmic reticulum (ER) quality control processes recognize and eliminate misfolded proteins to maintain cellular protein homeostasis and prevent the accumulation of defective proteins in the secretory pathway. Glycosylphosphatidylinositol (GPI)-anchored proteins carry a glycolipid modification, which provides an efficient ER export signal and potentially prevents the entry into ER-associated degradation (ERAD), which is one of the major pathways for clearance of terminally misfolded proteins from the ER. Here, we analyzed the degradation routes of different misfolded glycoproteins carrying a C-terminal GPI-attachment signal peptide in Arabidopsis thaliana. We found that a fusion protein consisting of the misfolded extracellular domain from Arabidopsis STRUBBELIG and the GPI-anchor attachment sequence of COBRA1 was efficiently targeted to hydroxymethylglutaryl reductase degradation protein 1 complex-mediated ERAD without the detectable attachment of a GPI anchor. Non-native variants of the GPI-anchored lipid transfer protein 1 (LTPG1) that lack a severely misfolded domain, on the other hand, are modified with a GPI anchor and targeted to the vacuole for degradation. Impaired processing of the GPI-anchoring signal peptide by mutation of the cleavage site or in a GPI-transamidase-compromised mutant caused ER retention and routed the non-native LTPG1 to ERAD. Collectively, these results indicate that for severely misfolded proteins, ER quality control processes are dominant over ER export. For less severely misfolded proteins, the GPI anchor provides an efficient ER export signal resulting in transport to the vacuole.

Severely misfolded proteins carrying a glycosylphosphatidylinositol (GPI)-anchor attachment sequence undergo a stringent quality control process in the endoplasmic reticulum that prevents GPI anchoring.  相似文献   

13.
The hexameric AAA-ATPase, Cdc48p, catalyzes an array of cellular activities, including endoplasmic reticulum (ER)-associated degradation (ERAD), ER/Golgi membrane dynamics, and DNA replication. Accumulating data suggest that unique Cdc48p partners, such as Npl4p-Ufd1p and Ubx1p/Shp1p (p47 in vertebrates), target Cdc48p for these diverse functions. Other Cdc48p-associated proteins have been identified, but the interplay among these factors and their activities is largely cryptic. We now report on a previously uncharacterized Cdc48p-associated protein, Ydr049p, also known as Vms1p, which binds Cdc48p at both the ER membrane and in the cytosol under non-stressed conditions. Loss of YDR049 modestly slows the degradation of the cystic fibrosis transmembrane conductance regulator but does not impede substrate ubiquitination, suggesting that Ydr049p acts at a postubiquitination step in the ERAD pathway. Consistent with Ydr049p playing a role in Cdc48p substrate release, ydr049 mutant cells accumulate Cdc48p-bound ubiquitinated proteins at the ER membrane. Moreover, YDR049 interacts with genes encoding select UBX (ubiquitin regulatory X) and UFD (ubiquitin fusion degradation) proteins, which are Cdc48p partners. Exacerbated growth defects are apparent in some of the mutant combinations, and synergistic effects on the degradation of cystic fibrosis transmembrane conductance regulator and CPY*, which is a soluble ERAD substrate, are evident in specific ydr049-ufd and -ubx mutants. These data suggest that Ydr049p acts in parallel with Cdc48p partners to modulate ERAD and other cellular activities.  相似文献   

14.
Signals and mechanisms for protein retention in the endoplasmic reticulum   总被引:1,自引:0,他引:1  
After their co-translational insertion into the ER lumen or the ER membrane, most proteins are transported via the Golgi apparatus downstream on the secretory pathway while a few protein species are retained in the ER. Polypeptide retention in the ER is either signal-independent or depends on specific retention signals encoded by the primary sequence of the polypeptide. A first category, i.e. the newly synthesized polypeptides that are unable to reach their final conformation, are retained in the ER where this quality control generally results in their degradation. A second category, namely the ER-resident proteins escape the bulk flow of secretion due to the presence of a specific N- or C-terminal signal that interacts with integral membrane or soluble receptors. ER retention of soluble proteins mediated by either KDEL, HDEL or related sequences and membrane receptors has been relatively well characterized in plants. Recent efforts has been relatively well characterized in plants. Recent efforts have aimed at a characterization of the retention signal(s) of type I membrane proteins in the plant ER.  相似文献   

15.
Cotranslational translocation of proteins across the mammalian ER membrane involves, in addition to the signal recognition particle receptor and the Sec61p complex, the translocating chain-associating membrane (TRAM) protein, the function of which is still poorly understood. Using reconstituted proteoliposomes, we show here that the translocation of most, but not all, secretory proteins requires the function of TRAM. Experiments with hybrid proteins demonstrate that the structure of the signal sequence determines whether or not TRAM is needed. Features that distinguish TRAM-dependent and -independent signal sequences include the length of their charged, NH2-terminal region and the structure of their hydrophobic core. In cases where TRAM is required for translocation, it is not needed for the initial interaction of the ribosome/nascent chain complex with the ER membrane but for a subsequent step inside the membrane in which the nascent chain is inserted into the translocation site in a protease-resistant manner. Thus, TRAM functions in a signal sequence-dependent manner at a critical, early phase of the translocation process.  相似文献   

16.
17.
Most secondary plastids of red algal origin are surrounded by four membranes and nucleus‐encoded plastid proteins have to traverse these barriers. Translocation across the second outermost plastid membrane, the periplastidal membrane (PPM), is facilitated by a ERAD‐(ER‐associated degradation) derived machinery termed SELMA (symbiont‐specific ERAD‐like machinery). In the last years, important subunits of this translocator have been identified, which clearly imply compositional similarities between SELMA and ERAD. Here we investigated, via protein–protein interaction studies, if the composition of SELMA is comparable to the known ERAD complex. As a result, our data suggest that the membrane proteins of SELMA, the derlin proteins, are linked to the soluble sCdc48 complex via the UBX protein sUBX. This is similar to the ERAD machinery whereas the additional SELMA components, sPUB und a second Cdc48 copy might indicate the influence of functional constraints in developing a translocation machinery from ERAD‐related factors. In addition, we show for the first time that a rhomboid protease is a central interaction partner of the membrane proteins of the SELMA system in complex plastids.  相似文献   

18.
The immediate environment of nascent membrane proteins undergoing integration into the ER membrane was investigated by photocrosslinking. Nascent polypeptides of different lengths, each containing a single IgM transmembrane sequence that functions either as a stop-transfer or a signal-anchor sequence, were synthesized by in vitro translation of truncated mRNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)-Lys-tRNA, signal recognition particle, and microsomal membranes. This yielded nascent chains with photoreactive probes at one end of the transmembrane sequence where two lysine residues are located. When irradiated, these nascent chains reacted covalently with several ER proteins. One prominent crosslinking target was a glycoprotein similar in size to a protein termed mp39, shown previously to be situated adjacent to a secretory protein during its translocation across the ER membrane (Krieg, U. C., A. E. Johnson, and P. Walter. 1989. J. Cell Biol. 109:2033-2043; Wiedmann, M., D. Goerlich, E. Hartmann, T. V. Kurzchalia, and T. A. Rapoport. 1989. FEBS (Fed. Eur. Biochem. Soc.) Lett. 257:263-268) and likely to be identical to a protein previously designated the signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature (Lond.). 328:830-833). Changing the orientation of the transmembrane domain in the bilayer, or making the transmembrane domain the first topogenic sequence in the nascent chain instead of the second, did not significantly alter the identities of the ER proteins that were the primary crosslinking targets. Furthermore, the nascent chains crosslinked to the mp39-like glycoprotein and other microsomal proteins even after the cytoplasmic tail of the nascent chain had been lengthened by nearly 100 amino acids beyond the stop-transfer sequence. Yet when the nascent chain was allowed to terminate normally, the major photocrosslinks were no longer observed, including in particular that to the mp39-like glycoprotein. These results show that the transmembrane segment of a nascent membrane protein is located adjacent to the mp39-like glycoprotein and other ER proteins during the integration process, and that at least a portion of the nascent chain remains in close proximity to these ER proteins until translation has been completed.  相似文献   

19.
Mutations in the SFTPC gene associated with interstitial lung disease in human patients result in misfolding, endoplasmic reticulum (ER) retention, and degradation of the encoded surfactant protein C (SP-C) proprotein. In this study, genes specifically induced in response to transient expression of two disease-associated mutations were identified by microarray analyses. Immunoglobulin heavy chain binding protein (BiP) and two heat shock protein 40 family members, endoplasmic reticulum-localized DnaJ homologues ERdj4 and ERdj5, were significantly elevated and exhibited prolonged and specific association with the misfolded proprotein; in contrast, ERdj3 interacted with BiP, but it did not associate with either wild-type or mutant SP-C. Misfolded SP-C, ERdj4, and ERdj5 coprecipitated with p97/VCP indicating that the cochaperones remain associated with the misfolded proprotein until it is dislocated to the cytosol. Knockdown of ERdj4 and ERdj5 expression increased ER retention and inhibited degradation of misfolded SP-C, but it had little effect on the wild-type protein. Transient expression of ERdj4 and ERdj5 in X-box binding protein 1(-/-) mouse embryonic fibroblasts substantially restored rapid degradation of mutant SP-C proprotein, whereas transfection of HPD mutants failed to rescue SP-C endoplasmic reticulum-associated protein degradation. ERdj4 and ERdj5 promote turnover of misfolded SP-C and this activity is dependent on their ability to stimulate BiP ATPase activity.  相似文献   

20.
We have used the homobifunctional cross-linking reagent disuccinimidyl suberate (DSS) to identify proteins that are adjacent to nascent polypeptides undergoing translocations across mammalian rough ER. Translocation intermediates were assembled by supplementing cell free translations of truncated mRNAs with the signal recognition particle (SRP) and microsomal membrane vesicles. Two prominent cross-linked products of 45 and 64 kD were detected. The 64-kD product was obtained when the cell free translation contained SRP, while formation of the 45-kD product required both SRP and translocation competent microsomal membrane vesicles. In agreement with previous investigators, we suggest that the 64-kD product arises by cross-linking of the nascent polypeptide to the 54-kD subunit of SRP. The 45-kD product resists alkaline extraction from the membrane, so we conclude that the 11-kD nascent polypeptide has been crosslinked to an integral membrane protein of approximately 34 kD (imp34). The cross-linked product does not bind to ConA Sepharose, nor is it sensitive to endoglycosidase H digestion; hence imp34 is not identical to the alpha or beta subunits of the signal sequence receptor (SSR). We propose that imp34 functions in concert with SSR to form a translocation site through which nascent polypeptides pass in traversing the membrane bilayer of the rough endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号