首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adiponectin is an adipose tissue-specific protein that is abundantly present in the circulation and suggested to be involved in insulin sensitivity and development of atherosclerosis. Because cytokines are suggested to regulate adiponectin, the aim of the present study was to investigate the interaction between adiponectin and three adipose tissue-derived cytokines (IL-6, IL-8, and TNF-alpha). The study was divided into three substudies as follows: 1) plasma adiponectin and mRNA levels in adipose tissue biopsies from obese subjects [mean body mass index (BMI): 39.7 kg/m2, n = 6] before and after weight loss; 2) plasma adiponectin in obese men (mean BMI: 38.7 kg/m2, n = 19) compared with lean men (mean BMI: 23.4 kg/m2, n = 10) before and after weight loss; and 3) in vitro direct effects of IL-6, IL-8, and TNF-alpha on adiponectin mRNA levels in adipose tissue cultures. The results were that 1) weight loss resulted in a 51% (P < 0.05) increase in plasma adiponectin and a 45% (P < 0.05) increase in adipose tissue mRNA levels; 2) plasma adiponectin was 53% (P < 0.01) higher in lean compared with obese men, and plasma adiponectin was inversely correlated with adiposity, insulin sensitivity, and IL-6; and 3) TNF-alpha (P < 0.01) and IL-6 plus its soluble receptor (P < 0.05) decreased adiponectin mRNA levels in vitro. The inverse relationship between plasma adiponectin and cytokines in vivo and the cytokine-induced reduction in adiponectin mRNA in vitro suggests that endogenous cytokines may inhibit adiponectin. This could be of importance for the association between cytokines (e.g., IL-6) and insulin resistance and atherosclerosis.  相似文献   

2.
Obesity is often associated with insulin resistance, low-grade systemic inflammation, and reduced plasma adiponectin. Inflammation is also increased in adipose tissue, but it is not clear whether the reductions of adiponectin levels are related to dysregulation of insulin activity and/or increased proinflammatory mediators. In this study, we investigated the interactions of insulin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) in the regulation of adiponectin production using in vivo and in vitro approaches. Plasma adiponectin and parameters of insulin resistance and inflammation were assessed in a cohort of lean and obese insulin-resistant subjects. In addition, the effect of insulin was examined in vivo using the hyperinsulinemic-euglycemic clamp, and in adipose tissue (AT) cultures. Compared with lean subjects, the levels of total adiponectin, and especially the high-molecular-weight (HMW) isomer, were abnormally low in obese insulin-resistant subjects. The hyperinsulinemic clamp data confirmed the insulin-resistant state in the obese patients and showed that insulin infusion significantly increased the plasma adiponectin in lean but not obese subjects (P < 0.01). Similarly, insulin increased total adiponectin release from AT explants of lean and not obese subjects. Moreover, expression and secretion of TNF-α and IL-6 increased significantly in AT of obese subjects and were negatively associated with expression and secretion of adiponectin. In 3T3-L1 and human adipocyte cultures, insulin strongly enhanced adiponectin expression (2-fold) and secretion (3-fold). TNF-α, and not IL-6, strongly opposed the stimulatory effects of insulin. Intriguingly, the inhibitory effect of TNF-α was especially directed toward the HMW isomer of adiponectin. In conclusion, these studies show that insulin upregulates adiponectin expression and release, and that TNF-α opposes the stimulatory effects of insulin. A combination of insulin resistance and increased TNF-α production could explain the decline of adiponectin levels and alterations of isomer composition in plasma of obese insulin-resistant subjects.  相似文献   

3.
Baboons show significant variation in body weight and composition, coupled with insulin resistance and phenotypes associated with the metabolic syndrome. An omental adipose tissue biopsy and a fasting blood sample were collected from 40 unrelated adult baboons from the colony at Southwest Foundation for Biomedical Research in San Antonio, TX. Serum was separated for analyses of circulating levels of glucose, insulin, adiponectin, resistin, interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1 or CCL-2). Adipose tissue biopsies were analyzed for cell volume and number. Total RNA was isolated from adipose tissue and adiponectin, resistin, delta-resistin, MCP-1 and IL-6 mRNA abundance were measured using real time, quantitative RT-PCR. Partial correlation coefficients were calculated among adipokine expression, fat tissue cell volume, and circulating levels of proteins. Cell volume was significantly correlated with expression of MCP-1 (r=0.44, p<0.05) and IL-6 mRNA (r=0.47, p<0.01). A step wise regression analysis was conducted with adipose tissue cell volume as dependent variable. The model identified IL-6 mRNA levels in adipose tissue as the only predictor. These observations support the role of IL-6 as a possible paracrine regulator in adipose tissue.  相似文献   

4.
The unprecedented increase in the prevalence of obesity and obesity-related disorders is causally linked to a chronic state of low-grade inflammation in adipose tissue. Timely resolution of inflammation and return of this tissue to homeostasis are key to reducing obesity-induced metabolic dysfunctions. In this study, with inflamed adipose, we investigated the biosynthesis, conversion, and actions of Resolvins D1 (RvD1, 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid) and D2 (RvD2, 7S,16R,17S-trihydroxy-4Z,8E,10Z,12E,14E,19Z-docosahexaenoic acid), potent anti-inflammatory and proresolving lipid mediators (LMs), and their ability to regulate monocyte interactions with adipocytes. Lipid mediator-metabololipidomics identified RvD1 and RvD2 from endogenous sources in human and mouse adipose tissues. We also identified proresolving receptors (i.e., ALX/FPR2, ChemR23, and GPR32) in these tissues. Compared with lean tissue, obese adipose showed a deficit of these endogenous anti-inflammatory signals. With inflamed obese adipose tissue, RvD1 and RvD2 each rescued impaired expression and secretion of adiponectin in a time- and concentration-dependent manner as well as decreasing proinflammatory adipokine production including leptin, TNF-α, IL-6, and IL-1β. RvD1 and RvD2 each reduced MCP-1 and leukotriene B(4)-stimulated monocyte adhesion to adipocytes and their transadipose migration. Adipose tissue rapidly converted both resolvins (Rvs) to novel oxo-Rvs. RvD2 was enzymatically converted to 7-oxo-RvD2 as its major metabolic route that retained adipose-directed RvD2 actions. These results indicate, in adipose, D-series Rvs (RvD1 and RvD2) are potent proresolving mediators that counteract both local adipokine production and monocyte accumulation in obesity-induced adipose inflammation.  相似文献   

5.
6.
AICAR stimulates adiponectin and inhibits cytokines in adipose tissue   总被引:5,自引:0,他引:5  
5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) can be used as an experimental tool to activate 5'-AMP-activated protein kinase (AMPK) and has been shown to improve insulin sensitivity. In parallel adiponectin also seems to activate AMPK and to improve insulin sensitivity. We have investigated the effects of AICAR on the gene expression of adiponectin and on gene expression and release of cytokines in human adipose tissue in vitro. AICAR stimulated AMPK alpha1 activity 3-4-fold (p<0.001), and dose-dependently increased adiponectin mRNA levels with significant stimulation (2-4-fold) at AICAR concentrations of 0.5-2mM (p<0.05). The adipose tissue protein release of tumor necrosis factor-alpha (TNF- alpha) and interleukin-6 (IL-6) was decreased by AICAR (p<0.05). In conclusion, AICAR stimulated adipose tissue AMPK alpha1 activity and adiponectin gene expression, while attenuating the release of TNF-alpha and IL-6. Reduced concentrations of these cytokines and increased levels of adiponectin might play a role for the insulin sensitizing effects of AICAR.  相似文献   

7.
The aim of this study was to determine whether amyloid precursor protein (APP) is expressed in human adipose tissue, dysregulated in obesity, and related to insulin resistance and inflammation. APP expression was examined by microarray expression profiling of subcutaneous abdominal adipocytes (SAC) and cultured preadipocytes from obese and nonobese subjects. Quantitative real-time PCR (QPCR) was performed to confirm differences in APP expression in SAC and to compare APP expression levels in adipose tissue, adipocytes, and stromal vascular cells (SVCs) from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) specimens. Adipose tissue samples were also examined by western blot and immunofluorescence confocal microscopy. Microarray studies demonstrated that APP mRNA expression levels were higher in SAC (approximately 2.5-fold) and preadipocytes (approximately 1.4) from obese subjects. Real-time PCR confirmed increased APP expression in SAC in a separate group of obese compared with nonobese subjects (P=0.02). APP expression correlated to in vivo indices of insulin resistance independently of BMI and with the expression of proinflammatory genes, such as monocyte chemoattractant protein-1 (MCP-1) (R=0.62, P=0.004), macrophage inflammatory protein-1alpha (MIP-1alpha) (R=0.60, P=0.005), and interleukin-6 (IL-6) (R=0.71, P=0.0005). Full-length APP protein was detected in adipocytes by western blotting and APP and its cleavage peptides, Abeta40 and Abeta42, were observed in SAT and VAT by immunofluorescence confocal microscopy. In summary, APP is highly expressed in adipose tissue, upregulated in obesity, and expression levels correlate with insulin resistance and adipocyte cytokine expression levels. These data suggest a possible role for APP and/or Abeta in the development of obesity-related insulin resistance and adipose tissue inflammation.  相似文献   

8.
The main goal of the present study was to evaluate the metabolic profile, inflammatory markers and the gene expression of the renin–angiotensin system (RAS) components in the visceral adipose tissue of eutrophic, obese and malnourished individuals and mice models of obesity and food restriction. Male Swiss mice were divided into eight groups and fed different levels of food restriction (20%, 40%, or 60%) using standard or high-fat diet. Metabolic profile and adipose tissues were assessed. The expression of AGT (Angiotensinogen), ACE (Angiotensin-converting enzyme), ACE2 (Angiotensin-converting enzyme 2), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in the mice epididymal adipose tissue and the human visceral adipose tissue was assessed. The main findings showed reduced body weight, improved metabolism, decreased adipose tissues weight and reduced adipocyte area in mice submitted to food restriction. Diminished expression of IL-6, TNF-α, AGT, AT1 and ACE was detected in the 20% and 40% food restriction animal groups, although they were increased in the 60% malnourished group. Increased expression of IL-6, TNF-α, AGT and ACE in obese and malnourished individuals was observed. Adipocytes size was increased in obese individuals and reduced in malnutrition. In conclusion, we found that food restriction of 20% and 40% improved the metabolic profile, ameliorated the inflammatory status and down-regulated the RAS in mice. Severe 60% food restriction (malnutrition), however, stimulated a proinflammatory state and increased AGT and ACE expression in the adipose tissue of mice. A similar profile was observed in the adipose tissue of obese and malnourished humans, supporting the critical role of inflammation and RAS as mediators of metabolic disorders.  相似文献   

9.
Adipose tissue is a major source of inflammatory and thrombotic cytokines. This study investigated the relationship of abdominal subcutaneous adipose tissue cytokine gene expression to body composition, fat distribution, and metabolic risk during obesity. We determined body composition, abdominal fat distribution, plasma lipids, and abdominal subcutaneous fat gene expression of leptin, TNF-alpha, IL-6, PAI-1, and adiponectin in 20 obese, middle-aged women (BMI, 32.7 +/- 0.8 kg/m2; age, 57 +/- 1 yr). A subset of these women without diabetes (n = 15) also underwent an OGTT. In all women, visceral fat volume was negatively related to leptin (r = -0.46, P < 0.05) and tended to be negatively related to adiponectin (r = -0.38, P = 0.09) gene expression. Among the nondiabetic women, fasting insulin (r = 0.69, P < 0.01), 2-h insulin (r = 0.56, P < 0.05), and HOMA index (r = 0.59, P < 0.05) correlated positively with TNF-alpha gene expression; fasting insulin (r = 0.54, P < 0.05) was positively related to, and 2-h insulin (r = 0.49, P = 0.06) tended to be positively related to, IL-6 gene expression; and glucose area (r = -0.56, P < 0.05) was negatively related to, and insulin area (r = -0.49, P = 0.06) tended to be negatively related to, adiponectin gene expression. Also, adiponectin gene expression was significantly lower in women with vs. without the metabolic syndrome (adiponectin-beta-actin ratio, 2.26 +/- 0.46 vs. 3.31 +/- 0.33, P < 0.05). We conclude that abdominal subcutaneous adipose tissue expression of inflammatory cytokines is a potential mechanism linking obesity with its metabolic comorbidities.  相似文献   

10.
Inflammation and oxidative stress are believed to contribute to hypertension in obesity/diabetes. Recently, we reported a role for the AT(2) receptor in blood pressure control in obese Zucker rats. However, the role of AT(2) receptors in inflammation and oxidative stress in obesity is not known. Therefore, in the present study, we tested the effects of the AT(2) receptor agonist CGP-42112A on inflammation and oxidative stress in obese Zucker rats and compared them in their lean counterparts. Rats were systemically treated with either vehicle (control) or CGP-42112A (1 μg·kg(-1)·min(-1); osmotic pump) for 2 wk. Markers of inflammation (CRP, MCP-1, TNF-α, and IL-6) and oxidative stress (HO-1, gp-91(phox)) as well as an antioxidant (SOD) were determined. Control obese rats had higher plasma levels of CRP, MCP-1, TNF-α, IL-6, and HO-1 compared with control lean rats. Conversely, plasma SOD activity was lower in control obese than in control lean rats. Furthermore, the protein levels of TNF-α and gp-91(phox) were higher in the kidney cortex of control obese rats. Interestingly, CGP-42112A treatment in obese rats reduced the plasma and kidney cortex inflammatory (TNF-α, IL-6) and oxidative stress (gp-91(phox)) markers and increased plasma SOD activity to the levels seen in lean control rats. However, CGP-42112A treatment in lean rats increased inflammatory (TNF-α, IL-6) and oxidative stress (gp-91(phox)) markers in the plasma and kidney cortex. Our present studies suggest anti-inflammatory and antioxidative functions of AT(2) receptor in obese Zucker rats but proinflammatory and prooxidative functions in lean Zucker rats.  相似文献   

11.
Macrophages develop into specialized cell types with special functional properties, depending on locally produced stimuli. Adipose tissue macrophages present particular characteristics, such as the M2 cell phenotype, and produce cytokines and chemokines usually produced by M1 cells. Our aim was to study the role of leptin, which is an adipokine produced and released by adipocytes, in the induction of these characteristics in macrophages found in the adipose tissue. Human CD14+ cells were obtained and maintained in culture with IFN-γ (classical M1 phenotype), IL-4 (alternative M2 phenotype) or leptin for 5 d. Surface marker expression was then analyzed by cytometry. In addition, the release of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, IL-10, IL-1ra, MCP-1, MIP-1α, and RANTES was quantified by ELISA after an LPS stimulus, in the culture supernatant. Macrophages exposed to leptin in culture expressed surface markers that were more similar to the M2 phenotype, but they were able to produce TNF-α, IL-6, IL-1β, IL-1ra, IL-10, MCP-1, and MIP-1α, as observed for M1 cells. Results suggest that leptin strongly contributes to the phenotype observed in macrophages found in adipose tissue.  相似文献   

12.
目的:探讨心理应激对小鼠脂肪组织黄嘌呤氧化酶表达、活性及相关指标的作用。方法:雄性无特定病原体(SPF)级20只昆明小鼠随机分2组(每组10只),即慢性束缚应激(Stress)组和正常对照(Control)组。Stress组小鼠每天在自制式束缚器中限制活动2 h,其余时间两组小鼠在相同环境中自由饮水摄食,实验持续14 d,取血和白色脂肪组织(WAT);观察脂肪组织病理学改变,检测WAT中黄嘌呤氧化酶(XO)和烟酰胺腺嘌呤二核苷酸磷酸氧化酶4(Nox-4)的蛋白水平,检测WAT组织中XO、Nox-4、超氧化物歧化酶(Mn SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)、脂联素(ADPN)、单核细胞趋化蛋白1(MCP-1)、白介素6(IL-6)、肿瘤坏死因子α(TNF-α)、胰岛素受体底物1(IRS-1)、葡萄糖转运蛋白4(GLUT-4)、组织因子(TF)、纤溶酶原激活物抑制物1(PAI-1)的mRNA表达,检测血清和WAT组织中XO酶活性以及血清甘油三酯(TG)、总胆固醇(T-Cho)、游离脂肪酸(FFA)、尿酸(UA)的含量。结果:与control组比较,stress小鼠腹股沟WAT组织中XO免疫染色阳性着色细胞黄褐色沉淀深且丰富,WAT中出现大量的单核细胞、中性粒细胞、嗜酸性粒细胞及浆细胞浸润反应和炎症性的改变;血清XO浓度、WAT组织中XO mRNA水平和XO的酶活性显著升高(P<0.01),血清游离脂肪酸(FFA)和尿酸(UA)的含量显著增高(P<0.01),WAT组织中Nox-4蛋白、MCP-1、IL-6、TNF-α、TF、PAI-1mRNA的表达水平显著增高(P<0.01),而Mn-SOD、GSH-Px、CAT、ADPN、IRS-1和GLUT-4的mRNA水平则显著降低(P<0.01)。结论:心理应激可诱发脂肪XO过量表达及其活性增高,进而引起脂肪炎症、糖代谢及凝血酶原异常等反应。  相似文献   

13.
Adipose tissue secretes adipokines that mediate insulin resistance, a characteristic feature of obesity and type 2 diabetes. By differential proteome analysis of cellular models of insulin resistance, we identified progranulin (PGRN) as an adipokine induced by TNF-α and dexamethasone. PGRN in blood and adipose tissues was markedly increased in obese mouse models and was normalized with treatment of pioglitazone, an insulin-sensitizing agent. Ablation of PGRN (Grn(-/-)) prevented mice from high fat diet (HFD)-induced insulin resistance, adipocyte hypertrophy, and obesity. Grn deficiency blocked elevation of IL-6, an inflammatory cytokine, induced by HFD in blood and adipose tissues. Insulin resistance induced by chronic administration of PGRN was suppressed by neutralizing IL-6 in vivo. Thus, PGRN is a key adipokine that mediates HFD-induced insulin resistance and obesity through production of IL-6 in adipose tissue, and may be a promising therapeutic target for obesity.  相似文献   

14.
Adipose tissue expresses tumor necrosis factor (TNF) and interleukin (IL)-6, which may cause obesity-related insulin resistance. We measured TNF and IL-6 expression in the adipose tissue of 50 lean and obese subjects without diabetes. Insulin sensitivity (S(I)) was determined by an intravenous glucose tolerance test with minimal-model analysis. When lean [body mass index (BMI) <25 kg/m(2)] and obese (BMI 30-40 kg/m(2)) subjects were compared, there was a 7.5-fold increase in TNF secretion (P < 0.05) from adipose tissue, and the TNF secretion was inversely related to S(I) (r = -0.42, P < 0.02). IL-6 was abundantly expressed by adipose tissue. In contrast to TNF, plasma (rather than adipose) IL-6 demonstrated the strongest relationship with obesity and insulin resistance. Plasma IL-6 was significantly higher in obese subjects and demonstrated a highly significant inverse relationship with S(I) (r = -0.71, P < 0.001). To separate the effects of BMI from S(I), subjects who were discordant for S(I) were matched for BMI, age, and gender. By use of this approach, subjects with low S(I) demonstrated a 3.0-fold increased level of TNF secretion from adipose tissue and a 2.3-fold higher plasma IL-6 level (P < 0.05) compared with matched subjects with a high S(I). Plasma IL-6 was significantly associated with plasma nonesterified fatty acid levels (r = 0.49, P < 0.002). Thus the local expression of TNF and plasma IL-6 are higher in subjects with obesity-related insulin resistance.  相似文献   

15.
Obesity is clearly an independent risk factor for increased severity of acute pancreatitis (AP), although the mechanisms underlying this association are unknown. Adipokines (including leptin and adiponectin) are pleiotropic molecules produced by adipocytes that are important regulators of the inflammatory response. We hypothesized that the altered adipokine milieu observed in obesity contributes to the increased severity of pancreatitis. Lean (C57BL/6J), obese leptin-deficient (LepOb), and obese hyperleptinemic (LepDb) mice were subjected to AP by six hourly intraperitoneal injections of cerulein (50 microg/kg). Severity of AP was assessed by histology and by measuring pancreatic concentration of the proinflammatory cytokines IL-1beta and IL-6, the chemokine MCP-1, and the marker of neutrophil activation MPO. Both congenitally obese strains of mice developed significantly more severe AP than wild-type lean animals. Severity of AP was not solely related to adipose tissue volume: LepOb mice were heaviest; however, LepDb mice developed the most severe AP both histologically and biochemically. Circulating adiponectin concentrations inversely mirrored the severity of pancreatitis. These data demonstrate that congenitally obese mice develop more severe AP than lean animals when challenged by cerulein hyperstimulation and suggest that alteration of the adipokine milieu exacerbates the severity of AP in obesity.  相似文献   

16.
Fucoxanthin, a marine carotenoid found in edible brown seaweeds, attenuates white adipose tissue (WAT) weight gain and hyperglycemia in diabetic/obese KK-Ay mice, although it does not affect these parameters in lean C57BL/6J mice. In perigonadal and mesenteric WATs of KK-Ay mice fed fucoxanthin, mRNA expression levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α), which are considered to induce insulin resistance, were markedly reduced compared to control mice. In contrast to KK-Ay mice, fucoxanthin did not alter MCP-1 and TNF-α mRNA expression levels in the WAT of lean C57BL/6J mice. Interleukin-6 (IL-6) and plasminogen activator inhibitor-1 mRNA expression levels in WAT were also decreased by fucoxanthin in KK-Ay mice. In differentiating 3T3-F442A adipocytes, fucoxanthinol, which is a fucoxanthin metabolite found in WAT, attenuated TNF-α-induced MCP-1 and IL-6 mRNA overexpression and protein secretion into the culture medium. In addition, fucoxanthinol decreased TNF-α, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) mRNA expression in RAW264.7 macrophage-like cells stimulated by palmitic acid. These findings indicate that fucoxanthin regulates mRNA expression of inflammatory adipocytokines involved in insulin resistance, iNOS, and COX-2 in WAT and has specific effects on diabetic/obese KK-Ay mice, but not on lean C57BL/6J mice.  相似文献   

17.
Obesity is associated with low-grade inflammation, insulin resistance, type 2 diabetes, and cardiovascular disease. This study investigated the effect of a 15-wk lifestyle intervention (hypocaloric diet and daily exercise) on inflammatory markers in plasma, adipose tissue (AT), and skeletal muscle (SM) in 27 severely obese subjects (mean body mass index: 45.8 kg/m2). Plasma samples, subcutaneous abdominal AT biopsies, and vastus lateralis SM biopsies were obtained before and after the intervention and analyzed by ELISA and RT-PCR. The intervention reduced body weight (P < 0.001) and increased insulin sensitivity (homeostasis model assessment; P < 0.05). Plasma adiponectin (P < 0.001) increased, and C-reactive protein (P < 0.05), IL-6 (P < 0.01), IL-8 (P < 0.05), and monocyte chemoattractant protein-1 (P < 0.01) decreased. AT inflammation was reduced, determined from an increased mRNA expression of adiponectin (P < 0.001) and a decreased expression of macrophage-specific markers (CD14, CD68), IL-6, IL-8, and tumor necrosis factor-alpha (P < 0.01). After adjusting for macrophage infiltration in AT, only IL-6 mRNA was decreased (P < 0.05). Only very low levels of inflammatory markers were found in SM. The intervention had no effect on adiponectin receptor 1 and 2 mRNA in AT or SM. Thus hypocaloric diet and increased physical activity improved insulin sensitivity and reduced low-grade inflammation. Markers of inflammation were particularly reduced in AT, whereas SM does not contribute to this attenuation of whole body inflammation.  相似文献   

18.
IL-8 is released from human adipose tissue. Circulating IL-8 is increased in obese compared with lean subjects and is associated with measures of insulin resistance, development of atherosclerosis, and cardiovascular disease. We studied 1) the production and release of IL-8 in vitro from paired samples of subcutaneous (SAT) and visceral (VAT) adipose tissue and 2) the production of IL-8 from whole adipose tissue, isolated adipocytes, and nonfat cells of adipose tissue. IL-8 release from VAT was fourfold higher than from SAT (P < 0.05), and IL-8 mRNA was twofold higher in VAT compared with SAT (P < 0.01). Dexamethasone (50 nM) attenuated IL-8 production by 50% (P < 0.05), and IL-1beta (2 microg/l) increased IL-8 production up to 15-fold (P < 0.001). IL-8 release from whole SAT explants correlated with body mass index (BMI; r = 0.78; P < 0.001), as did IL-8 release from nonfat cells (r = 0.79; P < 0.001). However, no correlation was found between IL-8 release from the fraction of isolated adipocytes and BMI (r = 0.01). In conclusion, we demonstrated an increased release of IL-8 from VAT compared with SAT. Furthermore, our data suggest that the observed elevation in circulating levels of IL-8 in obese subjects is due primarily to the release of IL-8 from nonfat cells from adipose tissue. The high levels of IL-8 release from human adipose tissue and accumulation of this tissue in obese subjects may account for some of the increase in circulating IL-8 observed in obesity.  相似文献   

19.
White adipose tissue is a major endocrine and signalling organ. It secretes multiple protein hormones and factors, termed adipokines (such as adiponectin, leptin, IL-6, MCP-1, TNFalpha) which engage in extensive cross-talk within adipose tissue and with other tissues. Many adipokines are linked to inflammation and immunity and these include cytokines, chemokines and acute phase proteins. In obesity, adipose tissue exhibits a major inflammatory response with increased production of inflammation-related adipokines. It has been proposed that hypoxia may underlie the inflammatory response in adipose tissue and evidence that the tissue is hypoxic in obesity has been obtained in animal models. Cell culture studies have demonstrated that the expression and secretion of key adipokines, including leptin, IL-6 and VEGF, are stimulated by hypoxia, while adiponectin (with an anti-inflammatory action) production falls. Hypoxia also stimulates glucose transport by adipocytes and may have a pervasive effect on cell function within adipose tissue.  相似文献   

20.

[Purpose]

The purpose of this study was to investigate the effects of the different endurance exercise intensities on the macrophage infiltration and adipocyte inflammation of ovariectomized rats.

[Methods]

24 female SD rats (6 weeks old) were randomly assigned to sham control (SC; n=6), ovariectomized control (OC; n=6), ovariectomized low intensity exercise (OL; n=6), and ovariectomized moderate intensity exercise (OM; n=6) groups. The two training groups ran for 60 min/day, 5 times/ week at 18 and 26m/min for 16 weeks. Twenty-four hours after the last exercise session, rats were sacrified, and epididymal pads were analyzed. F4/80 and IL-6 expressions were evaluated by western blotting. ICAM-1, VCAM-1 TLR4, TNF-α, and MCP-1 mRNA expressions were evaluated by RT-PCR.

[Results]

In comparison with OC group, OM group showed significantly lower body weight gain and adipose tissue mass. Also, OM group markedly inhibited F4/80 expression, adhesion molecule (ICAM-1, VCAM-1) and pro-inflammatory cytokines (TLR4, TNF-α, MCP-1) mRNA expressions in adipose tissue. In contrast, OL group partially prevented body weight gain while other examined parameter were unaffected by low intensity exercise training.

[Conclusion]

The results of this study suggest that OM group inhibits visceral macrophage infiltration by suppressing the adhesion molecules. It may also attenuate cytokine production in the adipose tissue by repressing the TLR4-mediated pro-inflammatory signaling cascades in ovariectomized rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号