首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Endothelial cells (ECs) are continuously exposed to hemodynamic forces imparted by blood flow. While it is known that endothelial behavior can be influenced by cytokine activation or fluid shear, the combined effects of these two independent agonists have yet to be fully elucidated.

Methodology

We investigated EC response to long-term inflammatory cues under physiologically relevant shear conditions via E-selectin expression where monolayers of human umbilical vein ECs were simultaneously exposed to laminar fluid shear and interleukin-1ß (shear-cytokine activation) in a parallel plate flow chamber.

Results and Conclusion

Naïve ECs exposed to shear-cytokine activation display significantly higher E-selectin expression for up to 24 hr relative to ECs activated in static (static-cytokine). Peak E-selectin expression occurred after 8–12 hr of continuous shear-cytokine activation contrary to the commonly observed 4–6 hr peak expression in ECs exposed to static-cytokine activation. Cells with some history of high shear conditioning exhibited either high or muted E-selectin expression depending on the durations of the shear pre-conditioning and the ensuing shear-cytokine activation. Overall, the presented data suggest that a high laminar shear enhances acute EC response to interleukin-1ß in naïve or shear-conditioned ECs as may be found in the pathological setting of ischemia/reperfusion injury while conferring rapid E-selectin downregulation to protect against chronic inflammation.  相似文献   

2.
Hippophae rhamnoides has been extensively used in oriental traditional medicines for treatment of asthma, skin diseases, gastric ulcers, and lung disorders. In this study, we isolated casuarinin from the leaves of H.rhamnoides and examined the effect of casuarinin on the TNF-α-induced ICAM-1 expression in a human keratinocytes cell line HaCaT. Pretreatment with casuarinin inhibited TNF-α-induced protein and mRNA expression of ICAM-1 and subsequent monocyte adhesiveness in HaCaT cells. Casuarinin significantly inhibited TNF-α-induced NF-κB activation. In addition, casuarinin inhibited activation of ERK and p38 MAPK in a dose-dependent manner. Furthermore, pretreatment with casuarinin decreased TNF-α-induced pro-inflammatory mediators, such as IL-1β, IL-6, IL-8, and MCP-1. These results demonstrated that casuarinin exerts its anti-inflammatory activity by suppressing TNF-α-induced expression of ICAM-1 and pro-inflammatory cytokines/chemokines via blockage of activation of NF-κB and ERK/p38 MAPK and can be used as a therapeutic agent against inflammatory skin diseases.  相似文献   

3.
The GRB2 associated binder 1 (GAB1) is an essential docking/adaptor protein for transmitting intracellular signals of the MET tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). We found that in response to hours of HGF/SF treatment, the GAB1 protein level is degraded by a mechanism involving MET activity and the proteasomal machinery. We also showed that GAB1 is both multi- and poly-ubiquitinated in a CBL-dependent manner. A long term exposure to HGF/SF caused a more sustained down-regulation of GAB1 than of MET, associated with a loss of reactivation of the ERK MAP kinases to subsequent acute ligand treatment. These data demonstrate that GAB1 is ubiquitinated by CBL and degraded by the proteasome, and plays a role in negative-feedback regulation of HGF/SF–MET signaling.  相似文献   

4.
Endothelial inflammation plays a critical role in the development and progression of cardiovascular disease, albeit the mechanisms need to be fully elucidated. We here report that treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor (TNF) α substantially increased the expression of MCP-induced protein 1 (MCPIP1). Overexpression of MCPIP1 protected ECs against TNFα-induced endothelial activation, as characterized by the attenuation in the expression of the adhesion molecule VCAM-1 and monocyte adherence to ECs. Conversely, small interfering RNA-mediated knock down of MCPIP1 increased the expression of VCAM-1 and monocytic adherence to ECs. These studies identified MCPIP1 as a feedback control of cytokines-induced endothelial inflammation.  相似文献   

5.
6.
Prostaglandin H synthase 2 (PGHS-2), a highly inducible isoenzyme, is responsible for overproduction of the prostaglandins (PGs) in inflammatory sites.We established that among fish oil polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), but not docosahexaenoic acid (DHA), greatly decreased interleukin-1β (IL-1β)-induced PGHS-2 expression in human pulmonary microvascular endothelial cells (HPMECs). Lipoxygenase products 12 (S)-hydroperoxyeicosapentaenoic acid ((S)-HpEPE), 15 (S)-HpEPE and leukotriene (LT) D5 reproduced similar inhibitory effect, suggesting that they may be the intermediate metabolites responsible for PGHS-2 down-regulation by EPA. Accordingly, the EPA effect is prevented by nordihydroguaiaretic acid (NDGA) and by REV 5901, nonspecific and specific 5-lipoxygenase inhibitors, respectively. Besides, inhibition of cyclooxygenase activity by ibuprofen, indomethacin or aspirin was not able to prevent this effect. Moreover, cyclooxygenase metabolites of EPA (PGs D3, E3 and I3) markedly potentiate IL-1β-induced PGHS-2 expression, probably by increasing intracellular cAMP levels. Peroxisome proliferator-activated receptors (PPARs) are known to be activated by fatty acids (FAs) such as EPA. We found here that HPMECs express only weak amounts of PPARα and PPARγ whose activation by synthetic agonists, Wy-14,643 and ciglitazone, does not cause any inhibition of IL-1β-induced PGHS-2 expression. This finding ruled out the involvement of PPARs in the EPA inhibitory effect. In addition, we established that EPA, which failed to inhibit nuclear factor-κB (NF-κB) activation, suppressed p38 mitogen-activated protein kinase (MAPK) phosphorylation in stimulated HPMECs.Our data demonstrate that EPA, unlike DHA, down-regulates PGHS-2 expression in HPMECs probably through its 5-lipoxygenase-dependent metabolites and advocates a beneficial role for this FA in limiting inflammatory response.  相似文献   

7.
Adhesion molecules such as ICAM-1 are important in the infiltration of leukocytes into the site of inflammation. In this study, we investigated the inhibitory effects of curcumin on ICAM-1 expression and monocyte adhesiveness as well as its underlying action mechanism in the TNF-α-stimulated keratinocytes. Curcumin induced expression of heme oxygenase-1 (HO-1) in the human keratinocyte cell line HaCaT. In addition, curcumin induced Nrf2 activation in dose- and time-dependent manners in the HaCaT cells. Curcumin suppressed TNF-α- induced ICAM-1 expression and subsequent monocyte adhesion, which were reversed by the addition of tin protoporphyrin IX (SnPP), a specific inhibitor of HO-1, or HO-1 knockdown using siRNA. Furthermore, Nrf2 knockdown using siRNA reversed the inhibitory effect of curcumin on the TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes. These results suggest that curcumin may exert its anti-inflammatory activity by suppressing the TNF-α-induced ICAM-1 expression and subsequent monocyte adhesion via expression of HO-1 in the keratinocytes. [BMB Reports 2013;46(8): 410-415]  相似文献   

8.
In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.  相似文献   

9.
Recruitment and trafficking of autoreactive leucocytes across the BNB (blood–nerve barrier) is an early pathological insult in GBS (Guillain-Barré syndrome), an aggressive autoimmune disorder of the PNS (peripheral nervous system). Whereas the aetiology and pathogenesis of GBS remain unclear, pro-inflammatory cytokines, including TNFα (tumour necrosis factor α), are reported to be elevated early in the course of GBS and may initiate nerve injury by activating the BNB. Previously, we reported that disrupting leucocyte trafficking in vivo therapeutically attenuates the course of an established animal model of GBS. Here, PNMECs (peripheral nerve microvascular endothelial cells) that form the BNB were harvested from rat sciatic nerves, immortalized by SV40 (simian virus 40) large T antigen transduction and subsequently challenged with TNFα. Relative changes in CCL2 (chemokine ligand 2) and ICAM-1 (intercellular adhesion molecule 1) expression were determined. We report that TNFα elicits marked dose- and time-dependent increases in CCL2 and ICAM-1 mRNA and protein content and promotes secretion of functional CCL2 from immortalized and primary PNMEC cultures. TNFα-mediated secretion of CCL2 promotes, in vitro, the transendothelial migration of CCR2-expressing THP-1 monocytes. Increased CCL2 and ICAM-1 expression in response to TNFα may facilitate recruitment and trafficking of autoreactive leucocytes across the BNB in autoimmune disorders, including GBS.  相似文献   

10.
11.
Hyperglycemia is the major cause of diabetic angiopathy. Sarpogrelate hydrochloride is an antiplatelet drug, and expected to be useful in the treatment of chronic arterial occlusive diseases. The aim of our study was to evaluate the possible effects of sarpogrelate hydrochloride on adhesion molecule expression and its underlying mechanism in the prevention and treatment of cardiovascular disorders. Intercellular adhesion molecule-1 (ICAM-1) expression and superoxide dismutase (SOD) activity were determined after endothelial cells were exposed to high glucose in the absence and presence of sarpogrelate hydrochloride. Coincubation of endothelial cells with high glucose for 24 h resulted in a significant increase of monocyte–endothelial cell adhesion and the expression of ICAM-1 (P < 0.01). These effects were abolished by sarpogrelate hydrochloride and sarpogrelate hydrochloride significantly increased SOD activities (40 ± 8 vs. 47 ± 7, n = 8, P < 0.01). The low dose sarpogrelate group (0.1 μM) had significantly higher monocyte–endothelial cell adhesion and the expression of ICAM-1 than medium dose sarpogrelate group (1.0 μM) and high dose sarpogrelate group (10.0 μM) (P < 0.05 for comparison among three groups and P < 0.01 for difference between low and high dose sarpogrelate groups). These findings suggested that sarpogrelate hydrochloride was able to protect vascular endothelium from dysfunction induced by high glucose.  相似文献   

12.
13.
Resistin is a cytokine and fractalkine (Fk) a cell adhesion molecule and chemokine that contribute to human vascular inflammation by mechanisms not clearly defined. We questioned whether resistin induces Fk expression in human endothelial cells (HEC), compared the effect with that of the pro-inflammatory cytokine, TNF-α, and evaluated the consequences of co-stimulating HEC with both activators on Fk induction and on the signalling molecules involved. We found that resistin up-regulated Fk expression at comparable level to that of TNF-α by a mechanism involving P38 and JNK MAPK and NF-κB. Co-stimulation of cells with resistin and TNF-α did not increase Fk expression induced by every single inducer. Moreover resistin reduced the expression induced by TNF-α in HEC. The new data uncover Fk as a novel molecular link between resistin and inflammation and show that resistin and TNF-α have no additive effect in Fk up-regulation or on the signalling molecules implicated.  相似文献   

14.
15.
16.
17.
This study was conducted to test the hypothesis that n-3 polyunsaturated fatty acids are able to down-regulate expression of adhesion molecules and nuclear factor-κB (NF-κB) activation in vascular endothelial cells, in addition to reducing atherosclerotic lesions in vivo. We report here that docosahexaenoic acid (DHA) reduces atherosclerotic lesions in the aortic arteries of apolipoprotein E knockout (apoE-/-) mice. Consistent with the observation in animal study, DHA inhibited THP-1 cell adhesion to tumor necrosis factor α (TNF-α)-activated human aortic endothelial cells (HAECs). Expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) on the cell surface of HAECs was determined by cell-surface enzyme-linked immunosorbent assay. DHA and eicosapentaenoic acid decreased VCAM-1 expression in a dose-dependent manner in TNF-α treated HAECs, while cis-linoleic acid and arachidonic acid did not have any significant effect on either VCAM-1 or ICAM-1 expression. Moreover, DHA significantly reduced VCAM-1 protein expression in the cell lysates of TNF-α-treated HAECs, as determined by Western blot analysis. In line with NF-κB signaling pathway, DHA suppressed the TNF-α-activated IκBα phosphorylation and degradation as well as IκB kinase-β phosphorylation. Subsequently, translocation of the NF-κB (p50/p65) and AP-1 (c-Fos/c-Jun) subunits was down-regulated by DHA in the nucleus of HAECs. These results suggest that DHA negatively regulates TNF-α-induced VCAM-1 expression through attenuation of NF-κB signaling pathway and AP-1 activation. This study provides evidence that DHA may contribute to the prevention of atherosclerosis and inflammatory diseases in vivo.  相似文献   

18.
Leucocyte adhesion to the vascular endothelium is a critical event in the early inflammatory response to infection and injury.This process is primarily regulate...  相似文献   

19.
20.
Epigallocatechin gallate (EGCG), the major polyphenol in green tea, acutely stimulates production of nitric oxide (NO) from vascular endothelium to reduce hypertension and improve endothelial dysfunction in spontaneously hypertensive rats. Herein, we explored additional mechanisms whereby EGCG may mediate beneficial cardiovascular actions. When compared with vehicle-treated controls, EGCG treatment (2.5 μM, 8 h) of human aortic endothelial cells (HAEC) caused a ~three-fold increase in heme oxygenase-1 (HO-1) mRNA and protein with comparable increases in HO-1 activity. This was unaffected by pretreatment of cells with wortmannin, LY294002, PD98059 or L-NAME (PI 3-kinase, MEK and NO synthase inhibitors, respectively). Pretreatment of HAEC with SB203580 (p38 MAPK inhibitor) or siRNA knockdown of p38 MAPK completely blocked EGCG-stimulated induction of HO-1. EGCG treatment also inhibited tumor-necrosis-factor-α-stimulated expression of vascular cell adhesion molecule (VCAM)-1 and decreased adhesion of monocytes to HAEC. siRNA knockdown of HO-1, p38 MAPK or Nrf-2 blocked these inhibitory actions of EGCG. In HAEC transiently transfected with a human HO-1 promoter luciferase reporter (or an isolated Nrf-2 responsive region), luciferase activity increased in response to EGCG. This was inhibitable by SB203580 pretreatment. EGCG-stimulated expression of HO-1 and Nrf-2 was blocked by siRNA knockdown of Nrf-2 or p38 MAPK. Finally, liver from mice chronically treated with EGCG had increased HO-1 and decreased VCAM-1 expression. Thus, in vascular endothelium, EGCG requires p38 MAPK to increase expression of Nrf-2 that drives expression of HO-1, resulting in increased HO-1 activity. Increased HO-1 expression may underlie anti-inflammatory actions of EGCG in vascular endothelium that may help mediate beneficial cardiovascular actions of green tea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号