首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Acute promyelocytic leukemia (APL) is driven by a chromosomal translocation whose product, the PML/retinoic acid (RA) receptor α (RARA) fusion protein, affects both nuclear receptor signaling and PML body assembly. Dissection of APL pathogenesis has led to the rediscovery of PML bodies and revealed their role in cell senescence, disease pathogenesis, and responsiveness to treatment. APL is remarkable because of the fortuitous identification of two clinically effective therapies, RA and arsenic, both of which degrade PML/RARA oncoprotein and, together, cure APL. Analysis of arsenic-induced PML or PML/RARA degradation has implicated oxidative stress in the biogenesis of nuclear bodies and SUMO in their degradation.  相似文献   

3.
Two critical hits for promyelocytic leukemia   总被引:10,自引:0,他引:10  
  相似文献   

4.
5.
6.
7.
8.
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation t(15;17), which results in the fusion of the promyelocytic leukemia gene (PML) and retinoic acid receptor alpha gene (RARalpha). APL can be effectively treated with the cell differentiation inducer all-trans retinoic acid (ATRA). NB4 cells, an acute promyelocytic leukemia cell line, have the t(15;17) translocation and differentiate in response to ATRA, whereas HL-60 cells lack this chromosomal translocation, even after differentiation by ATRA. To identify changes in the gene expression patterns of promyelocytic leukemia cells during differentiation, we compared the gene expression profiles in NB4 and HL-60 cells with and without ATRA treatment using a cDNA microarray containing 10,000 human genes. NB4 and HL-60 cells were treated with ATRA (10(-6)M) and total RNA was extracted at various time points (3, 8, 12, 24, and 48h). Cell differentiation was evaluated for cell morphology changes and CD11b expression. PML/RARalpha degradation was studied by indirect immunofluoresence with polyclonal PML antibodies. Typical morphologic and immunophenotypic changes after ATRA treatment were observed both in NB4 and HL-60 cells. The cDNA microarray identified 119 genes that were up-regulated and 17 genes that were down-regulated in NB4 cells, while 35 genes were up-regulated and 36 genes were down-regulated in HL60 cells. Interestingly, we did not find any common gene expression profiles regulated by ATRA in NB4 and HL-60 cells, even though the granulocytic differentiation induced by ATRA was observed in both cell lines. These findings suggest that the molecular mechanisms and genes involved in ATRA-induced differentiation of APL cells may be different and cell type specific. Further studies will be needed to define the important molecular pathways involved in granulocytic differentiation by ATRA in APL cells.  相似文献   

9.
The triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) induces differentiation and apoptosis of diverse human tumor cells. In the present study, we examined the effects of the CDDO imidazolide imide (CDDO-Im) on the NB4 acute promyelocytic leukemia (APL) cell line and primary APL cells. The results show that CDDO-Im selectively downregulates expression of the PML/retinoic receptor alpha fusion protein by a caspase-dependent mechanism and sensitizes APL cells to the differentiating effects of all-trans retinoic acid (ATRA). CDDO-Im treatment of APL cells was also associated with disruption of redox balance and activation of the extrinsic apoptotic pathway. In concert with these results, CDDO-Im sensitizes APL cells to arsenic trioxide (ATO)-induced apoptosis. Our findings indicate that CDDO-Im may be effective in the treatment of APL by: (i) downregulation of PML/RARalpha; (ii) enhancement of ATRA-induced differentiation; and (iii) sensitization of ATO-induced APL cell death.  相似文献   

10.
The promyelocytic leukemia (PML) protein is a tumor suppressor factor mostly known by its involvement in acute promyelocytic leukemia (APL). Interestingly, recent studies have provided evidence that, in the central nervous system, PML is involved in neurogenesis. However, prospective studies of PML in brain are lacking. To further understand the role of PML in the mammalian brain, we studied plasticity and behavioral changes in PML knockout mice. If PML is involved in neurogenesis, and neurogenesis is an important process for proper brain development as well as learning and memory functions, we hypothesized that PML might have a role in plasticity and cognition. Behavioral studies demonstrated that PML knockout mice present abnormalities in conditioned learning and spatial memory, as determined by fear conditioning and Morris water maze tasks. Experiments to determine normal exploratory behavior interestingly revealed that PML knockout mice present reduced anxiety‐related responses as compared to control animals. This was confirmed when PML knockout mice spent more time in the open arms of an elevated plus‐maze, which is an indication of decreased anxiety. Additionally, impairments in hippocampus‐dependent learning were mirrored by altered long‐term plasticity at Schaffer collateral‐CA1 synapses. We now provide the first evidence for an important role of PML in the brain, indicating that PML might have a role in synaptic plasticity and associated behavioral processes.  相似文献   

11.
Acute promyelocytic leukemia (APL) is characterized by a reciprocal translocation t(15;17)(q22;q21) leading to the disruption of Promyelocytic leukemia (PML) and Retionic Acid Receptor Alpha (RARA) followed by reciprocal PML-RARA fusion in 90% of the cases. Fluorescence in situ hybridization (FISH) has overcome the hurdles of unavailability of abnormal and/or lack of metaphase cells, and detection of cryptic, submicroscopic rearrangements. In the present study, besides diagnostic approach we sought to analyze these cases for identification and characterization of cryptic rearrangements, deletion variants and unknown RARA translocation variants by application of D-FISH and RARA break-apart probe strategy on interphase and metaphase cells in a large series of 200 cases of APL. Forty cases (20%) had atypical PML-RARA and/or RARA variants. D-FISH with PML/RARA probe helped identification of RARA insertion to PML. By application of D-FISH on metaphase cells, we documented that translocation of 15 to 17 leads to 17q deletion which results in loss of reciprocal fusion and/or residual RARA on der(17). Among the complex variants of t(15;17), PML-RARA fusion followed by residual RARA insertion closed to PML-RARA on der(15) was unique and unusual. FISH with break-apart RARA probe on metaphase cells was found to be a very efficient strategy to detect unknown RARA variant translocations like t(11;17)(q23;q21), t(11;17)(q13;q21) and t(2;17)(p21;q21). These findings proved that D-FISH and break-apart probe strategy has potential to detect primary as well as secondary additional aberrations of PML, RARA and other additional loci. The long-term clinical follow-up is essential to evaluate the clinical importance of these findings.  相似文献   

12.
The promyelocytic leukemia (PML) gene is involved in the 15/17 chromosomal translocation of acute promyelocytic leukemia (APL). It encodes a nuclear phosphoprotein containing an alpha-helical coiled-coil domain with four heptad repeats. The heptad repeats consist of four clusters of hydrophobic amino acids that mediate in vivo the complex formation between PML and other PML molecules or PML-RARalpha mutant protein. In this report, we show the production of PML coiled-coil (fragment 223-360) as a fusion protein, its solubilization by the combined action of two different detergents, and its purification with affinity chromatography after column proteolytic cleavage. The FPLC chromatograms of the purified coiled-coils, carried out under non-denaturing conditions, show that the peptide elutes only in the presence of Sarkosyl detergent (conc. 0.1%) and, under these conditions, elutes as a tetrameric complex. This confirms the evidence from in vivo experiments that this region is responsible for protein complex formation. The HPLC analyses show the presence of a single peak eluting under highly hydrophobic conditions, indicating the high hydrophobicity of the peptide in accordance with the primary sequence analysis. Finally, the purified peptide was structurally characterized by means of circular dichroism (CD) measurements that were carried out with low Sarkosyl concentration (0.003%). The CD spectra indicate a low alpha-helical content (13.5%) with respect to predictions based on the primary sequence analysis (PSI-PRED, SS-PRO, and J-PRED), suggesting that the alpha-helix content could be modulated by coiled-coil surrounding domains and/or by other post-translational modifications, even if the effect of the Sarkosyl on the peptide secondary structure cannot be excluded.  相似文献   

13.
14.
Protein misfolding has traditionally been linked to the pathogenesis of various neurodegenerative diseases. However, emerging evidence from various laboratories, including ours, suggests that protein misfolding may also play a fundamental role in some malignancies, particularly those caused by fusion oncoprotein generated from chromosomal translocation. Promyelocytic leukemia (PML) fused to the retinoic acid receptor (RAR) is a fusion oncoprotein linked to the transformation of acute promyelocytic leukemia (APL), and is not only a misfolded protein itself, but also promotes misfolding of nuclear receptor corepressor (N-CoR) protein, a corepressor essential for the growth-suppressive function of several tumor-suppressor proteins. PML–RAR promotes misfolding of N-CoR by inducing aberrant post-translational modification, which destabilizes its core and promotes instability. Misfolded N-CoR, thus, contributes to differentiation arrest and survival of APL cells through loss-of-function and aberrant gain-of-function properties. Therapeutic restoration of N-CoR conformation and function with conformation-modifying agents not only releases this differentiation arrest but also sensitizes APL cells to programmed cell death. These findings illustrate the potential of the misfolded N-CoR protein as a conformation-based drugable molecular target for APL, and highlights the promise of various conformation-modifying agents as novel therapeutics for APL. Protein conformational rearrangement, resulting from an inherited or acquired genetic alteration, could be a common pathological phenomenon contributing to transformation in different types of leukemias and solid tumors and, therefore, could serve as a common ground for designing a unifying diagnostic as well as therapeutic approach for a widely diverse disease such as cancer. To that end, APL could serve as a model for the development of a novel conformation-based therapeutic approach for other malignant diseases.  相似文献   

15.
《Autophagy》2013,9(10):1108-1114
Acute promyelocytic leukemia (APL) results from a blockade of granulocyte differentiation at the promyelocytic stage. All-trans retinoic acid (ATRA) induces clinical remission in APL patients by enhancing the rapid differentiation of APL cells and the clearance of PML-RARα, APL’s hallmark oncoprotein. In the present study, we demonstrated that both autophagy and Beclin 1, an autophagic protein, are upregulated during the course of ATRA-induced neutrophil/granulocyte differentiation of an APL-derived cell line named NB4 cells. This induction of autophagy is associated with downregulation of Bcl-2 and inhibition of mTOR activity. Small interfering RNA-mediated knockdown of BECN1 expression enhances apoptosis triggered by ATRA in NB4 cells but does not affect the differentiation process. These results provide evidence that the upregulation of Beclin 1 by ATRA constitutes an anti-apoptotic signal for maintaining the viability of mature APL cells, but has no crucial effect on the granulocytic differentiation. This finding may help to elucidate the mechanisms involved in ATRA resistance of APL patients, and in the ATRA syndrome caused by an accumulation of mature APL cells.  相似文献   

16.
17.
Acute promyelocytic leukemia (APL) results from a blockade of granulocyte differentiation at the promyelocytic stage. All-trans retinoic acid (ATRA) induces clinical remission in APL patients by enhancing the rapid differentiation of APL cells and the clearance of PML-RARα, APL's hallmark oncoprotein. In the present study, we demonstrated that both autophagy and Beclin 1, an autophagic protein, are upregulated during the course of ATRA-induced neutrophil/granulocyte differentiation of an APL-derived cell line named NB4 cells. This induction of autophagy is associated with downregulation of Bcl-2 and inhibition of mTOR activity. Small interfering RNA-mediated knockdown of BECN1 expression enhances apoptosis triggered by ATRA in NB4 cells but does not affect the differentiation process. These results provide evidence that the upregulation of Beclin 1 by ATRA constitutes an anti-apoptotic signal for maintaining the viability of mature APL cells, but has no crucial effect on the granulocytic differentiation. This finding may help to elucidate the mechanisms involved in ATRA resistance of APL patients, and in the ATRA syndrome caused by an accumulation of mature APL cells.  相似文献   

18.
19.
H de Thé  C Lavau  A Marchio  C Chomienne  L Degos  A Dejean 《Cell》1991,66(4):675-684
We have previously shown that the t(15;17) translocation specifically associated with acute promyelocytic leukemia (APL) fuses the retinoic acid receptor alpha (RAR alpha) locus to an as yet unknown gene, initially called myl and now renamed PML. We report here that this gene product contains a novel zinc finger motif common to several DNA-binding proteins. The PML-RAR alpha mRNA encodes a predicted 106 kd chimeric protein containing most of the PML sequences fused to a large part of RAR alpha, including its DNA- and hormone-binding domains. In transient expression assays, the hybrid protein exhibits altered transactivating properties if compared with the wild-type RAR alpha progenitor. Identical PML-RAR alpha fusion points are found in several patients. These observations suggest that in APL, the t(15;17) translocation generates an RAR mutant that could contribute to leukemogenesis through interference with promyelocytic differentiation.  相似文献   

20.
Considerable progress has been made over the past decade in the understanding and management of acute promyelocytic leukemia (APL). At the laboratory level, molecular mechanisms underlying the arrest of differentiation that typically features in this malignancy, have been clarified and currently provide important models for addressing future investigation aimed at releasing the maturation block in other malignancies. In the clinic, advances in the management of APL have converted this rapidly fatal disease into the most frequently curable leukemia in adults. Use of retinoids in combinatorial protocols with anthracycline-based chemotherapy for front line treatment currently results in long-term survival and potential cure in at least 60% of newly diagnosed patients. Even after relapse, the disease is still curable in a high percentage of cases by various approaches including combinations of chemotherapy, retinoids, arsenic trioxide, stem cell transplantation and antibody-targeted chemotherapy. Genetic testing for identification of the disease-specific gene rearrangement and monitoring of residual disease have proved critical in establishing correct diagnosis and better evaluate the response to therapy at the molecular level. Current 'hot' issues for clinical investigation include: (i) better understanding and management of the severe coagulopathy present at diagnosis in most patients; (ii) the definition of risk categories to improve identification of patients at highest risk of relapse and (iii) the translation of successful differentiation therapy to other leukemia subsets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号