首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
The Sec translocon constitutes a ubiquitous protein transport channel that consists in bacteria of the three core components: SecY, SecE, and SecG. Additional proteins interact with SecYEG during different stages of protein transport. During targeting, SecYEG interacts with SecA, the SRP receptor, or the ribosome. Protein transport into or across the membrane is then facilitated by the interaction of SecYEG with YidC and the SecDFYajC complex. During protein transport, SecYEG is likely to interact also with the protein quality control machinery, but details about this interaction are missing. By in vivo and in vitro site-directed cross-linking, we show here that the periplasmic chaperone PpiD is located in front of the lateral gate of SecY, through which transmembrane domains exit the SecY channel. The strongest contacts were found to helix 2b of SecY. Blue native PAGE analyses verify the presence of a SecYEG-PpiD complex in native Escherichia coli membranes. The PpiD-SecY interaction was not influenced by the addition of SecA and only weakly influenced by binding of nontranslating ribosomes to SecYEG. In contrast, PpiD lost contact to the lateral gate of SecY during membrane protein insertion. These data identify PpiD as an additional and transient subunit of the bacterial SecYEG translocon. The data furthermore demonstrate the highly modular and versatile composition of the Sec translocon, which is probably essential for its ability to transport a wide range of substrates across membranes in bacteria and eukaryotes.  相似文献   

2.
The two major components of the Eubacteria Sec-dependent protein translocation system are the heterotrimeric channel-forming component SecYEG and its binding partner, the SecA ATPase nanomotor. Once bound to SecYEG, the preprotein substrate, and ATP, SecA undergoes ATP-hydrolytic cycles that drive the stepwise translocation of proteins. Although a previous site-directed in vivo photocross-linking study (Mori, H., and Ito, K. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 16159-16164) elucidated residues of SecY needed for interaction with SecA, no reciprocal study for SecA protein has been reported to date. In the present study we mapped residues of SecA that interact with SecY or SecG utilizing this approach. Our results show that distinct domains of SecA on two halves of the molecule interact with two corresponding SecY partners as well as with the central cytoplasmic domain of SecG. Our data support the in vivo relevance of the Thermotoga maritima SecA·SecYEG crystal structure that visualized SecYEG interaction for only one-half of SecA as well as previous studies indicating that SecA normally binds two molecules of SecYEG.  相似文献   

3.
SecA is an ATP-dependent molecular motor pumping secretory and outer membrane proteins across the cytoplasmic membrane in bacteria. SecA associates with the protein-conducting channel, the heterotrimeric SecYEG complex, in a so-called posttranslational manner. A recent study further showed binding of a monomeric state of SecA to the ribosome. However, the true oligomeric state of SecA remains controversial because SecA can also form functional dimers, and high-resolution crystal structures exist for both the monomer and the dimer. Here we present the cryo-electron microscopy structures of Escherichia coli SecA bound to the ribosome. We show that not only a monomeric SecA binds to the ribosome but also that two copies of SecA can be observed that form an elongated dimer. Two copies of SecA completely surround the tunnel exit, providing a unique environment to the nascent polypeptides emerging from the ribosome. We identified the N-terminal helix of SecA required for a stable association with the ribosome. The structures indicate a possible function of the dimeric form of SecA at the ribosome.  相似文献   

4.
In bacteria, the SecYEG protein translocation complex employs the cytosolic ATPase SecA to couple the energy of ATP binding and hydrolysis to the mechanical force required to push polypeptides through the membrane. The molecular basis of this energy transducing reaction is not well understood. A peptide-binding array has been employed to identify sites on SecYEG that interact with SecA. These results along with fluorescence spectroscopy have been exploited to characterise a long-distance conformational change that connects the nucleotide-binding fold of SecA to the transmembrane polypeptide channel in SecY. These movements are driven by binding of non-hydrolysable ATP analogues to a monomer of SecA in association with the SecYEG complex. We also determine that interaction with SecYEG simultaneously decreases the affinity of SecA for ATP and inhibitory magnesium, favouring a previously identified active state of the ATPase. Mutants of SecA capable of binding but not hydrolysing ATP do not elicit this conformationally active state, implicating residues of the Walker B motif in the early chain of events that couple ATP binding to the mobility of the channel.  相似文献   

5.
Translocation of precursor proteins across the cytoplasmic membrane in bacteria is mediated by a multi-subunit protein complex termed translocase, which consists of the integral membrane heterotrimer SecYEG and the peripheral homodimeric ATPase SecA. Preproteins are bound by the cytosolic molecular chaperone SecB and targeted in a complex with SecA to the translocation site at the cytoplasmic membrane. This interaction with SecYEG allows the SecA/preprotein complex to insert into the membrane by binding of ATP to the high affinity nucleotide binding site of SecA. At that stage, presumably recognition and proofreading of the signal sequence occurs. Hydrolysis of ATP causes the release of the preprotein in the translocation channel and drives the withdrawal of SecA from the membrane-integrated state. Hydrolysis of ATP at the low-affinity nucleotide binding site of SecA converts the protein into a compact conformational state and releases it from the membrane. In the absence of the proton motive force, SecA is able to complete the translocation stepwise by multiple nucleotide modulated cycles. Received: 4 August 1995 / Accepted: 9 October 1995  相似文献   

6.
SecYEG translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds the membrane-embedded SecYEG protein-conducting channel with high affinity and then drives the stepwise translocation of preproteins across the membrane through multiple cycles of ATP binding and hydrolysis. We have investigated the kinetics of nucleotide binding to SecA while associated with the SecYEG complex. Lipid-bound SecA was separated from Se-cYEG-bound SecA by sedimentation of the proteoliposomes through a glycerol cushion, which maintains the SecA native state and effectively removes the lipid-bound SecA fraction. Nucleotide binding was assessed by means of fluorescence resonance energy transfer using fluorescent ATP analogues as acceptors of the intrinsic SecA tryptophan fluorescence in the presence of a tryptophanless variant of the SecYEG complex. Binding of SecA to the SecYEG complex elevated the rate of nucleotide exchange at SecA independently of the presence of preprotein. This defines a novel pretranslocation activated state of SecA that is primed for ATP hydrolysis upon preprotein interaction.  相似文献   

7.
In bacteria, the Sec-protein transport complex facilitates the passage of most secretory and membrane proteins across and into the plasma membrane. The core complex SecYEG forms the protein channel and engages either ribosomes or the ATPase SecA, which drive translocation of unfolded polypeptide chains through the complex and into the periplasmic space. Escherichia coli SecYEG forms dimers in membranes, but in detergent solution the population of these dimers is low. However, we find that stable dimers can be assembled by the addition of a monoclonal antibody. Normally, a stable SecYEG-SecA complex can only form on isolated membranes or on reconstituted proteo-liposomes. The antibody-stabilised SecYEG dimer binds one SecA molecule in detergent solution. In the presence of AMPPNP, a non-hydrolysable analogue of ATP, a complex forms containing one antibody and two each of SecYEG and SecA. SecYEG monomers or tetramers do not associate to a significant degree with SecA. The observed variability in the stoichiometry of SecYEG and SecA association and its nucleotide modulation may be important and necessary for the protein translocation reaction.  相似文献   

8.
The SecYEG complex is a membrane-embedded channel that permits the passage of precursor proteins (preproteins) across the inner membrane of Escherichia coli. SecA is a molecular motor that associates with the SecYEG pore and drives the stepwise translocation of preproteins across the membrane through multiple cycles of ATP binding and hydrolysis. We have investigated the conformational state of soluble and SecYEG-bound SecA using single tryptophan mutants of SecA. The fluorescence spectral properties of the single tryptophans of SecA and their accessibility to the quencher acrylamide demonstrate that SecA undergoes a conformational change that results in a more compact structure upon binding of ATP and binding to the SecYEG pore. In addition, SecYEG-bound SecA undergoes ATP-dependent conformational changes that are not observed for soluble SecA. These data support a model in which binding to the SecYEG channel has a major impact on the SecA conformation.  相似文献   

9.
Translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds with high affinity to the membrane-embedded protein-conducting SecYEG complex and serves as both a receptor for secretory proteins and as an ATP-driven molecular motor. Cycles of ATP binding and hydrolysis by SecA drive the progressive movement of the preprotein across the membrane. Surface plasmon resonance allows an online monitoring of protein interactions. Here we report on the kinetic analysis of the interaction between SecA and the membrane-embedded SecYEG complex. Immobilization of membrane vesicles containing overproduced SecYEG on the Biacore Pioneer L1 chip allows the detection of high affinity SecA binding to the SecYEG complex and online monitoring of the translocation of the secretory protein proOmpA. SecA binds tightly to the SecYEG.proOmpA complex and is released only upon ATP hydrolysis. The results provide direct evidence for a model in which SecA cycles at the SecYEG complex during translocation.  相似文献   

10.
The translocon is a membrane-embedded protein assembly that catalyzes protein movement across membranes. The core translocon, the SecYEG complex, forms oligomers, but the protein-conducting channel is at the center of the monomer. Defining the properties of the SecYEG protomer is thus crucial to understand the underlying function of oligomerization. We report here the reconstitution of a single SecYEG complex into nano-scale lipid bilayers, termed Nanodiscs. These water-soluble particles allow one to probe the interactions of the SecYEG complex with its cytosolic partner, the SecA dimer, in a membrane-like environment. The results show that the SecYEG complex triggers dissociation of the SecA dimer, associates only with the SecA monomer and suffices to (pre)-activate the SecA ATPase. Acidic lipids surrounding the SecYEG complex also contribute to the binding affinity and activation of SecA, whereas mutations in the largest cytosolic loop of the SecY subunit, known to abolish the translocation reaction, disrupt both the binding and activation of SecA. Altogether, the results define the fundamental contribution of the SecYEG protomer in the translocation subreactions and illustrate the power of nanoscale lipid bilayers in analyzing the dynamics occurring at the membrane.  相似文献   

11.
More than 30 years of research have revealed that the dynamic nanomotor SecA is a central player in bacterial protein secretion. SecA associates with the SecYEG channel and transports polypeptides post-translationally to the trans side of the cytoplasmic membrane. It comprises a helicase-like ATPase core coupled to two domains that provide specificity for preprotein translocation. Apart from SecYEG, SecA associates with multiple ligands like ribosomes, nucleotides, lipids, chaperones and preproteins. It exerts its essential contribution in two phases. First, SecA, alone or in concert with chaperones, helps mediate the targeting of the secretory proteins from the ribosome to the membrane. Next, at the membrane it converts chemical energy to mechanical work and translocates preproteins through the SecYEG channel. SecA is a highly dynamic enzyme, it exploits disorder–order kinetics, swiveling and dissociation of domains and dimer to monomer transformations that are tightly coupled with its catalytic function. Preprotein signal sequences and mature domains exploit these dynamics to manipulate the nanomotor and thus achieve their export at the expense of metabolic energy. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

12.
Membrane protein biogenesis in bacteria occurs via dedicated molecular systems SecYEG and YidC that function independently and in cooperation. YidC belongs to the universally conserved Oxa1/Alb3/YidC family of membrane insertases and is believed to associate with translating ribosomes at the membrane surface. Here, we have examined the architecture of the YidC:ribosome complex formed upon YidC-mediated membrane protein insertion. Fluorescence correlation spectroscopy was employed to investigate the complex assembly under physiological conditions. A slightly acidic environment stimulates binding of detergent-solubilized YidC to ribosomes due to electrostatic interactions, while YidC acquires specificity for translating ribosomes at pH-neutral conditions. The nanodisc reconstitution of the YidC to embed it into a native phospholipid membrane environment strongly enhances the YidC:ribosome complex formation. A single copy of YidC suffices for the binding of translating ribosome both in detergent and at the lipid membrane interface, thus being the minimal functional unit. Data reveal molecular details on the insertase functioning and interactions and suggest a new structural model for the YidC:ribosome complex.  相似文献   

13.
The soluble cytoplasmic ATPase motor protein SecA powers protein transport across the Escherichia coli inner membrane via the SecYEG translocon. Although dimeric in solution, SecA associates monomerically with SecYEG during secretion according to several crystallographic and cryo-EM structural studies. The steps SecA follows from its dimeric cytoplasmic state to its active SecYEG monomeric state are largely unknown. We have previously shown that dimeric SecA in solution dissociates into monomers upon electrostatic binding to negatively charged lipid vesicles formed from E. coli lipids. Here we address the question of the disposition of SecA on the membrane prior to binding to membrane embedded SecYEG. We mutated to cysteine, one at a time, 25 surface-exposed residues of a Cys-free SecA. To each of these we covalently linked the polarity-sensitive fluorophore NBD whose intensity and fluorescence wavelength-shift change upon vesicle binding report on the the local membrane polarity. We established from these measurements the disposition of SecA bound to the membrane in the absence of SecYEG. Our results confirmed that SecA is anchored in the membrane interface primarily by the positive charges of the N terminus domain. But we found that a region of the nucleotide binding domain II is also important for binding. Both domains are rich in positively charged residues, consistent with electrostatic interactions playing the major role in membrane binding. Selective replacement of positively charged residues in these domains with alanine resulted in weaker binding to the membrane, which allowed us to quantitate the relative importance of the domains in stabilizing SecA on membranes. Fluorescence quenchers inside the vesicles had little effect on NBD fluorescence, indicating that SecA does not penetrate significantly across the membrane. Overall, the topology of SecA on the membrane is consistent with the conformation of SecA observed in crystallographic and cryo-EM structures of SecA-SecYEG complexes, suggesting that SecA can switch between the membrane-associated and the translocon-associated states without significant changes in conformation.  相似文献   

14.
The SecYEG complex constitutes a protein conducting channel across the bacterial cytoplasmic membrane. It binds the peripheral ATPase SecA to form the translocase. When isoleucine 278 in transmembrane segment 7 of the SecY subunit was replaced by a unique cysteine, SecYEG supported an increased preprotein translocation and SecA translocation ATPase activity, and allowed translocation of a preprotein with a defective signal sequence. SecY(I278C)EG binds SecA with a higher affinity than normal SecYEG, in particular in the presence of ATP. The increased translocation activity of SecY(I278C)EG was confirmed in a purified system consisting of SecYEG proteoliposomes, while immunoprecipitation in detergent solution reveal that translocase-preprotein complexes are more stable with SecY(I278C) than with normal SecY. These data imply an important role for SecY transmembrane segment 7 in SecA binding. As improved SecA binding to SecY was also observed with the prlA4 suppressor mutation, it may be a general mechanism underlying signal sequence suppression.  相似文献   

15.
During early stages of cotranslational protein translocation across the endoplasmic reticulum (ER) membrane the ribosome is targeted to the heterotrimeric Sec61p complex, the major component of the protein-conducting channel. We demonstrate that this interaction is mediated by the 28S rRNA of the eukaryotic large ribosomal subunit. Bacterial ribosomes also bind via their 23S rRNA to the bacterial homolog of the Sec61p complex, the SecYEG complex. Eukaryotic ribosomes bind to the SecYEG complex, and prokaryotic ribosomes to the Sec61p complex. These data indicate that rRNA-mediated interaction of ribosomes with the translocation channel occurred early in evolution and has been conserved.  相似文献   

16.
Translocase mediates preprotein translocation across the Escherichia coli inner membrane. It consists of the SecYEG integral membrane protein complex and the peripheral ATPase SecA. Here we show by functional assays, negative-stain electron microscopy and mass measurements with the scanning transmission microscope that SecA recruits SecYEG complexes to form the active translocation channel. The active assembly of SecYEG has a side length of 10.5 nm and exhibits an approximately 5 nm central cavity. The mass and structure of this SecYEG as well as the subunit stoichiometry of SecA and SecY in a soluble translocase-precursor complex reveal that translocase consists of the SecA homodimer and four SecYEG complexes.  相似文献   

17.
The motor protein SecA drives the translocation of (pre-)proteins across the SecYEG channel in the bacterial cytoplasmic membrane by nucleotide-dependent cycles of conformational changes often referred to as membrane insertion/de-insertion. Despite structural data on SecA and an archaeal homolog of SecYEG, the identity of the sites of interaction between SecA and SecYEG are unknown. Here, we show that SecA can be cross-linked to several residues in cytoplasmic loop 5 (C5) of SecY, and that SecA directly interacts with a part of transmembrane segment 4 (TMS4) of SecY that is buried in the membrane region of SecYEG. Mutagenesis of either the conserved Arg357 in C5 or Glu176 in TMS4 interferes with the catalytic activity of SecA but not with binding of SecA to SecYEG. Our data explain how conformational changes in SecA could be directly coupled to the previously proposed opening mechanism of the SecYEG channel.  相似文献   

18.
Preprotein translocation in Escherichia coli is mediated by translocase, a multimeric membrane protein complex with SecA as the peripheral ATPase and SecYEG as the translocation pore. Unique cysteines were introduced into transmembrane segment (TMS) 2 of SecY and TMS 3 of SecE to probe possible sites of interaction between the integral membrane subunits. The SecY and SecE single-Cys mutants were cloned individually and in pairs into a secYEG expression vector and functionally overexpressed. Oxidation of the single-Cys pairs revealed periodic contacts between SecY and SecE that are confined to a specific alpha-helical face of TMS 2 and 3, respectively. A Cys at the opposite alpha-helical face of TMS 3 of SecE was found to interact with a neighboring SecE molecule. Formation of this SecE dimer did not affect the high-affinity binding of SecA to SecYEG and ATP hydrolysis, but blocked preprotein translocation and thus uncouples the SecA ATPase activity from translocation. Conditions that prevent membrane deinsertion of SecA markedly stimulated the interhelical contact between the SecE molecules. The latter demonstrates a SecA-mediated modulation of the protein translocation channel that is sensed by SecE.  相似文献   

19.
Protein insertion into the bacterial inner membrane is facilitated by SecYEG or YidC. Although SecYEG most likely constitutes the major integration site, small membrane proteins have been shown to integrate via YidC. We show that YidC can also integrate multispanning membrane proteins such as mannitol permease or TatC, which had been considered to be exclusively integrated by SecYEG. Only SecA-dependent multispanning membrane proteins strictly require SecYEG for integration, which suggests that SecA can only interact with the SecYEG translocon, but not with the YidC insertase. Targeting of multispanning membrane proteins to YidC is mediated by signal recognition particle (SRP), and we show by site-directed cross-linking that the C-terminus of YidC is in contact with SRP, the SRP receptor, and ribosomal proteins. These findings indicate that SRP recognizes membrane proteins independent of the downstream integration site and that many membrane proteins can probably use either SecYEG or YidC for integration. Because protein synthesis is much slower than protein transport, the use of YidC as an additional integration site for multispanning membrane proteins may prevent a situation in which the majority of SecYEG complexes are occupied by translating ribosomes during cotranslational insertion, impeding the translocation of secretory proteins.  相似文献   

20.
The role of SecA in selecting bacterial proteins for export was examined using a heterologous system that lacks endogenous SecA and other bacterial proteins. This approach allowed us to assess the interaction of SecA with ribosome-bound photoreactive nascent chains in the absence of trigger factor, SecB, Ffh (the bacterial protein component of the signal recognition particle), and the SecYEG translocon in the bacterial plasma membrane. In the absence of membranes, SecA photocross-linked efficiently to nascent translocation substrate OmpA in ribosome-nascent chain (RNC) complexes in an interaction that was independent of both ATP and SecB. However, no photocross-linking to a nascent membrane protein that is normally targeted by a signal recognition particle was observed. Modification of the signal sequence revealed that its affinity for SecA and Ffh varied inversely. Gel filtration showed that SecA binds tightly to both translating and non-translating ribosomes. When purified SecA.RNC complexes containing nascent OmpA were exposed to inner membrane vesicles lacking functional SecA, the nascent chains were successfully targeted to SecYEG translocons. However, purified RNCs lacking SecA were unable to target to the same membranes. Taken together, these data strongly suggest that cytosolic SecA participates in the selection of proteins for export by co-translationally binding to the signal sequences of non-membrane proteins and directing those nascent chains to the translocon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号