首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amplified fragment length polymorphisms (AFLP) method has become an attractive tool in phylogenetics due to the ease with which large numbers of characters can be generated. In contrast to sequence-based phylogenetic approaches, AFLP data consist of anonymous multilocus markers. However, potential artificial amplifications or amplification failures of fragments contained in the AFLP data set will reduce AFLP reliability especially in phylogenetic inferences. In the present study, we introduce a new automated scoring approach, called “AMARE” (AFLP MAtrix REduction). The approach is based on replicates and makes marker selection dependent on marker reproducibility to control for scoring errors. To demonstrate the effectiveness of our approach we record error rate estimations, resolution scores, PCoA and stemminess calculations. As in general the true tree (i.e. the species phylogeny) is not known, we tested AMARE with empirical, already published AFLP data sets, and compared tree topologies of different AMARE generated character matrices to existing phylogenetic trees and/or other independent sources such as morphological and geographical data. It turns out that the selection of masked character matrices with highest resolution scores gave similar or even better phylogenetic results than the original AFLP data sets.  相似文献   

2.
This study compares the properties of dominant markers, such as amplified fragment length polymorphisms (AFLPs), with those of codominant multiallelic markers, such as microsatellites, in reconstructing parentage. These two types of markers were used to search for both parents of an individual without prior knowledge of their relationships, by calculating likelihood ratios based on genotypic data, including mistyping. Experimental data on 89 oak trees genotyped for six microsatellite markers and 159 polymorphic AFLP loci were used as a starting point for simulations and tests. Both sets of markers produced high exclusion probabilities, and among dominant markers those with dominant allele frequencies in the range 0.1-0.4 were more informative. Such codominant and dominant markers can be used to construct powerful statistical tests to decide whether a genotyped individual (or two individuals) can be considered as the true parent (or parent pair). Gene flow from outside the study stand (GFO), inferred from parentage analysis with microsatellites, overestimated the true GFO, whereas with AFLPs it was underestimated. As expected, dominant markers are less efficient than codominant markers for achieving this, but can still be used with good confidence, especially when loci are deliberately selected according to their allele frequencies.  相似文献   

3.
We examined the effect of increasing the number of sampled amplified fragment length polymorphism (AFLP) bands to reconstruct an accurate and well-supported AFLP-based phylogeny. In silico AFLP was performed using simulated DNA sequences evolving along balanced and unbalanced model trees with recent, uniform and ancient radiations and average branch lengths (from the most internal node to the tip) ranging from 0.02 to 0.05 substitutions per site. Trees were estimated by minimum evolution (ME) and maximum parsimony (MP) methods from both DNA sequences and virtual AFLP fingerprints. The comparison of the true tree with the estimated AFLP trees suggests that moderate numbers of AFLP bands are necessary to recover the correct topology with high bootstrap support values (i.e. >70%). Fewer numbers of bands are necessary for shorter tree lengths and for balanced than for unbalanced tree topologies. However, branch length estimation was rather unreliable and did not improve substantially after a certain number of bands were sampled. These results hold for different levels of genome coverage and number of taxa analysed. In silico AFLP using bacterial genomic DNA sequences recovered a well-supported tree topology that mirrored an empirical phylogeny based on a set of 31 orthologous gene sequences when as few as 263 AFLP bands were scored. These results suggest that AFLPs may be an efficient alternative to traditional DNA sequencing for accurate topology reconstruction of shallow trees when not very short ancestral branches exist.  相似文献   

4.
Avicennia marina is an important mangrove species with a wide geographical and climatic distribution which suggests that large amounts of genetic diversity are available for conservation and breeding programs. In this study we compare the informativeness of AFLPs and SSRs for assessing genetic diversity within and among individuals, populations and subspecies of A. marina in Australia. Our comparison utilized three SSR loci and three AFLP primer sets that were known to be polymorphic, and could be run in a single analysis on a capillary electrophoresis system, using different- colored fluorescent dyes. A total of 120 individuals representing six populations and three subspecies were sampled. At the locus level, SSRs were considerably more variable than AFLPs, with a total of 52 alleles and an average heterozygosity of 0.78. Average heterozygosity for AFLPs was 0.193, but all of the 918 bands scored were polymorphic. Thus, AFLPs were considerably more efficient at revealing polymorphic loci than SSRs despite lower average heterozygosities. SSRs detected more genetic differentiation between populations (19 vs 9%) and subspecies (35 vs 11%) than AFLPs. Principal co-ordinate analysis revealed congruent patterns of genetic relationships at the individual, population and subspecific levels for both data sets. Mantel testing confirmed congruence between AFLP and SSR genetic distances among, but not within, population comparisons, indicating that the markers were segregating independently but that evolutionary groups (populations and subspecies) were similar. Three genetic criteria of importance for defining priorities for ex situ collections or in situ conservation programs (number of alleles, number of locally common alleles and number of private alleles) were correlated between the AFLP and SSR data sets. The congruence between AFLP and SSR data sets suggest that either method, or a combination, is applicable to expanded genetic studies of mangroves. The codominant nature of SSRs makes them ideal for further population-based investigations, such as mating-system analyses, for which the dominant AFLP markers are less well suited. AFLPs may be particularly useful for monitoring propagation programs and identifying duplicates within collections, since a single PCR assay can reveal many loci at once. Received: 3 October 2000 / Accepted: 19 February 2001  相似文献   

5.
Amplified fragment length polymorphisms (AFLPs) can be used to quickly develop linkage maps in plant species and are especially useful for crops with large genomes like oat (Avena sativa L., 2n=6x=42). High reproducibility and consistency are crucial if AFLP linkage maps are employed for comparative mapping. We mapped AFLP markers in combination with restriction fragment length polymorphism (RFLP) markers in two recombinant inbred populations of hexaploid oat in two laboratories to test the consistency of AFLP markers in a polyploid crop. Eight primer combinations produced 102 and 121 scoreable AFLP markers in the respective populations. In a population from the cross Kanota×Ogle, AFLP markers were placed onto a RFLP reference map consisting of 32 linkage groups. Nineteen linkage groups from another population from the cross Kanota×Marion were assigned to the reference map using AFLP and RFLP markers homologous to those used in the Kanota× Ogle cross. Reproducibility of AFLP assays was high in both laboratories and between laboratories. The AFLP markers were well-distributed across the genome in both populations. Many AFLP markers tended to extend the distance between adjacent RFLP markers in linkage analysis. Of the 27 polymorphic AFLPs common in both populations, 20 mapped to homologous linkage groups, 4 were unlinked in at least one population, and 3 mapped to different linkage groups in the two crosses. We believe that 1 of the 3 markers that mapped to a different linkage group in the two populations mapped to homoeologous linkage groups. The linkage map of hexaploid oat is not yet complete, and genomic rearrangements such as translocations exist among cultivars and are likely to account for the remaining two non-syntenous mapping results. AFLPs provide not only a fast and powerful tool for mapping but could be useful in characterizing genomic structural variations among germplasms in hexaploid oat. Received: 17 December 1999 / Accepted: 28 July 2000  相似文献   

6.
AFLP markers were evaluated for determining the phylogenetic relationships Lactuca spp. Genetic distances based on AFLP data were estimated for 44 morphologically diverse lines of cultivated L. sativa and 13 accessions of the wild species L. serriola, L. saligna, L. virosa, L. perennis, and L. indica. The same genotypes were analyzed as in a previous study that had utilized RFLP markers. The phenetic tree based on AFLP data was consistent with known taxonomic relationships and similar to a tree developed with RFLP data. The genetic distance matrices derived from AFLP and RFLP data were compared using least squares regression analysis and, for the cultivar data, by principal component analysis. There was also a positive linear relationship between distance estimates based on AFLP data and kinship coefficients calculated from pedigree data. AFLPs represent reliable PCR-based markers for studies of genetic relationships at a variety of taxonomic levels.  相似文献   

7.
Polytomies, or phylogenetic “bushes”, are the result of a series of internodes occurring in a short period of evolutionary time (which can result in data that do not contain enough information), or data that have too much homoplasy to resolve a bifurcating branching pattern. In this study we used the Aethia auklet polytomy to explore the effectiveness of different methods for resolving polytomies: mitochondrial DNA gene choice, number of individuals per species sampled, model of molecular evolution, and AFLP loci. We recovered a fully-resolved phylogeny using NADH dehydrogenase subunit 2 (ND2) sequence data under two different Bayesian models. We were able to corroborate this tree under one model with an expanded mtDNA dataset. Effectiveness of additional intraspecific sampling varied with node, and fully 20% of the subsampled datasets failed to return a congruent phylogeny when we sampled only one or two individuals per species. We did not recover a resolved phylogeny using AFLP data. Conflict in the AFLP dataset showed that nearly all possible relationships were supported at low levels of confidence, suggesting that either AFLPs are not useful at the genetic depth of the Aethia auklet radiation (7–9% divergent in the mtDNA ND2 gene), perhaps resulting in too much homoplasy, or that the Aethia auklets have experienced incomplete lineage sorting at many nuclear loci.  相似文献   

8.
Date palm is the most economically important plant in the Middle East due to its nutritionally valuable fruit. The development of accurate DNA fingerprints to characterize cultivars and the detection of genetic diversity are of great value for breeding programs. The present study explores the usefulness of ISSR and AFLP molecular markers to detect relationships among 10 date palm (Phoenix dactylifera L.) cultivars from Saudi Arabia. Thirteen ISSR primers and six AFLP primer combinations were examined. The level of polymorphism among cultivars for ISSRs ranged from 20% to 100% with an average of 85%. Polymorphism levels for AFLPs ranged from 63% to 84% with an average of 76%. The total number of cultivar-specific markers was 241, 208 of which were generated from AFLP analysis. AJWA cultivar had the highest number of cultivar-specific ISSR markers, whereas DEK, PER, SUK-Q, SHA and MOS-H cultivars had the lowest. RAB and SHA cultivars had the most and least AFLP cultivar-specific markers, respectively. The highest pairwise similarity indices for ISSRs, AFLPs and combined markers were 84% between DEK (female) and PER (female), 81% between SUK-Q (male) and RAB (male), and 80% between SUK-Q (male) and RAB (male), respectively. The lowest similarity indices were 65% between TAB (female) and SUK-Q (male), 67% between SUK-A (female) and SUK-Q (male), and 67% between SUK-A (female) and SUK-Q (male). Cultivars of the same sex had higher pairwise similarities than those between cultivars of different sex. The Neighbor-Joining (NJ) tree generated from the ISSR dataset was not well resolved and bootstrap support for resolved nodes in the tree was low. AFLP and combined data generated completely resolved trees with high levels of bootstrap support. In conclusion, AFLP and ISSR approaches enabled discrimination among 10 date palm cultivars of from Saudi Arabia, which will provide valuable information for future improvement of this important crop.  相似文献   

9.
A comparison of the different methods of the estimation of genetic diversity is important to evaluate their utility as a tool in germplasm conservation and plant breeding. Amplified fragment length polymorphism (AFLP), microsatellites or SSR and morphological traits markers were used to evaluate 45 sorghum germplasm for genetic diversity assessment and discrimination power. The mean polymorphism information content (PIC) values were 0.65 (AFLPs) and 0.46 (SSRs). The average pairwise genetic distance estimates were 0.57 (morphological traits), 0.62 (AFLPs) and 0.60 (SSRs) markers data sets. The Shannon diversity index was higher for morphological traits (0.678) than AFLP (0.487) and SSR (0.539). The correlation coefficients obtained by the Mantel matrix correspondence test, which was used to compare the cophenetic matrices for the different markers, showed that estimated values of genetic relationship given for AFLP and SSR markers, as well as for morphological and SSR markers were significantly related (p <0.001). However, morphological and AFLP data showed non-significant correlation (p >0.05). Both data sets from AFLP and SSR allowed all accessions to be uniquely identified; two accessions could not be distinguished by the morphological data. In summary, AFLP and SSR markers proved to be efficient tools in assessing the genetic variability among sorghum genotypes. The patterns of variation appeared to be consistent for the three marker systems, and they can be used for designing breeding programmes, conservation of germplasm and management of sorghum genetic resources.  相似文献   

10.
The most economically important group of species in the genus Amaranthus is the A. hybridus species complex, including three cultivated grain amaranths, A. cruentus, A. caudatus, and A. hypochondriacus, and their putative wild progenitors, A. hybridus, A. quitensis, and A. powellii. Taxonomic confusion exists among these closely related taxa. Internal transcribed spacer (ITS) of nuclear ribosomal DNA, amplified fragment length polymorphism (AFLP), and double-primer fluorescent intersimple sequence repeat (ISSR) were employed to reexamine the taxonomic status and phylogenetic relationships of grain amaranths and their wild relatives. Low ITS divergence in these taxa resulted in poorly resolved phylogeny. However, extensive polymorphisms exist at AFLP and ISSR loci both within and among species. In phylogenetic trees based on either AFLP or ISSR or the combined data sets, nearly all intraspecific accessions can be placed in their corresponding species clades, indicating that these taxa are well-separated species. The AFLP trees share many features in common with the ISSR trees, both showing a close relationship between A. caudatus and A. quitensis, placing A. hybridus in the same clade as all grain amaranths, and indicating that A. powellii is the most divergent taxon in the A. hybridus species complex. This study has demonstrated that both AFLP and double-primer fluorescent ISSR have a great potential for generating a large number of informative characters for phylogenetic analysis of closely related species, especially when ITS diversity is insufficient.  相似文献   

11.
The genus Rosa has a complex evolutionary history caused by several factors, often in conjunction: extensive hybridization, recent radiation, incomplete lineage sorting, and multiple events of polyploidy. We examined the applicability of AFLP markers for reconstructing (species) relationships in Rosa, using UPGMA clustering, Wagner parsimony, and Bayesian inference. All trees were well resolved, but many of the deeper branches were weakly supported. The cluster analysis showed that the rose cultivars can be separated into a European and an Oriental cluster, each being related to different wild species. The phylogenetic analyses showed that (1) two of the four subgenera (Hulthemia and Platyrhodon) do not deserve subgeneric status; (2) section Carolinae should be merged with sect. Cinnamomeae; (3) subsection Rubigineae is a monophyletic group within sect. Caninae, making sect. Caninae paraphyletic; and (4) there is little support for the distinction of the five other subsections within sect. Caninae. Comparison of the trees with morphological classifications and with previous molecular studies showed that all methods yielded reliable trees. Bayesian inference proved to be a useful alternative to parsimony analysis of AFLP data. Because of their genome-wide sampling, AFLPs are the markers of choice to reconstruct (species) relationships in evolutionary complex groups.  相似文献   

12.
AFLP and RAPD marker techniques have been used to evaluate and study the diversity and phylogeny of 54 lentil accessions representing six populations of cultivated lentil and its wild relatives. Four AFLP primer combinations revealed 23, 25, 52 and 48 AFLPs respectively, which were used to partition variation within and among Lens taxa. The results of AFLP analysis is compared to previous RAPD analysis of the same material. The two methods provide similar conclusions as far as the phylogeny of Lens is concerned. The AFLP technique detected a much higher level of polymorphyism than the RAPD analysis. The use of 148 AFLPs arising from four primer combinations was able to discriminate between genotypes which could not be distinguished using 88 RAPDs. The level of variation detected within the cultivated lentil with AFLP analysis indicates that it may be a more efficient marker technology than RAPD analysis for the construction of genetic linkage maps between carefully chosen cultivated lentil accessions.  相似文献   

13.
Even though next-generation sequencing (NGS) has now become the predominant state-of-the-art technique for genotyping populations, amplified fragment length polymorphism (AFLP) DNA fingerprinting is still a relevant method, thanks to its versatility, cost-effectiveness, independence of prior sequence information and broad applicability. Even though the number of AFLP studies reached its peak in 2012, it is still applied extensively for phylogenetic analysis, genotyping or identifying non-model species, which often feature complex and large genomes. For these purposes, tools continue to be developed for designing AFLP studies, scoring AFLPs or handling AFLP data. Moreover, AFLP studies embrace the NGS technology; for example, the whole-genome sequence of model species is used to design more efficient AFLP studies for non-model species. Conversely, in complexity reduction of polymorphic sequences and restriction site-associated DNA sequencing studies, polymorphisms are often found to be present in many restriction sites, which can still be studied as AFLPs. We discuss the latest advances in AFLP-based studies in the era of NGS and anticipate that AFLP will remain a relevant method in the near future, even for species with a known genome, owing to its many promising new features such as methylation-sensitive-AFLP. Here, we also present an optimized pipeline for converting AFLP markers into single-locus markers, which can be applied in both traditional AFLP and NGS studies.  相似文献   

14.
Homology of AFLP products in three mapping populations of barley   总被引:15,自引:0,他引:15  
Segregation of 850 polymorphic AFLP (amplified fragment length polymorphism) fragments was followed in three different doubled haploid (DH) barley populations, Dicktoo × Morex (DM), Igri × Franka (IF) and Blenheim × E224/3 (BE), which had previously been used to construct linkage maps using other molecular markers. The final maps consisted of 310, 655 and 474 markers, of which 234, 194 and 376, respectively, were AFLPs. A comparison of profiles from the parental lines identified 51 similar-sized AFLPs segregating in both DM and IF populations, 20 in the DM and BE populations and 18 in the IF and BE populations. Eight segregated in all three. Analysis of the complete datasets for each of the populations using Joinmap V.2. indicated that in general terms each of the AFLPs which were polymorphic in more than one population mapped to the same genetic locus. The number of co-dominant markers segregating in a single population ranged from 6% for DM to 12.6% for IF. These results are discussed in the context of using AFLP in genetic linkage and diversity studies. Received: 5 November 1996 / Accepted: 10 March 1997  相似文献   

15.
Efficient construction of reasonable density genetic linkage maps is an essential component of QTL detection programmes. The AFLP technique has been used to produce genetic linkage maps in a range of species. We have developed protocols to generate reproducible AFLP profiles in Pinus radiata and have evaluated the inheritance and informativeness of AFLP markers in this important timber species. The large genome size of P. radiata necessitated increased levels of selection at both the pre-amplification and selective amplification steps of the AFLP protocol to generate reproducible AFLP profiles. Once optimised ca. 41.3 scorable AFLP bands were resolvable through denaturing gels, of which 48.4% were polymorphic in a screen of eight unrelated trees. This level of polymorphism is ca. three times higher than with RAPD markers. The total number of bands and the number of polymorphismic bands per PCR were ca. halved when AFLPs were electrophoresed on non-denaturing gels and stained with ethidium bromide. Using the protocols developed, AFLP is an efficient method for generating the DNA markers required for genetic linkage map construction in P. radiata. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
BACKGROUND AND AIMS: Populations of oak (Quercus petraea and Q. robur) were investigated using morphological and molecular (AFLP) analyses to assess species distinction. The study aimed to describe species distinction in Irish oak populations and to situate this in a European context. METHODS: Populations were sampled from across the range of the island of Ireland. Leaf morphological characters were analysed through clustering and ordination methods. Putative neutral molecular markers (AFLPs) were used to analyse the molecular variation. Cluster and ordination analyses were also performed on the AFLP markers in addition to calculations of genetic diversity and F-statisitcs. KEY RESULTS: A notable divergence was uncovered between the morphological and molecular analyses. The morphological analysis clearly differentiated individuals into their respective species, whereas the molecular analysis did not. Twenty species-specific AFLP markers were observed from 123 plants in 24 populations but none of these was species-diagnostic. Principal Coordinate Analysis of the AFLP data revealed a clustering, across the first two axes, of individuals according to population rather than according to species. High F(ST) values calculated from AFLP markers also indicated population differentiation (F(ST) = 0.271). Species differentiation accounted for only 13 % of the variation in diversity compared with population differentiation, which accounted for 27 %. CONCLUSIONS: The results show that neutral molecular variation is partitioned more strongly between populations than between species. Although this could indicate that the populations of Q. petraea and Q. robur studied may not be distinct species at a molecular level, it is proposed that the difficulty in distinguishing the species in Irish oak populations using AFLP markers is due to population differentiation masking species differences. This could result from non-random mating in small, fragmented woodland populations. Hybridization and introgression between the species could also have a significant role.  相似文献   

17.
Towards a saturated sorghum map using RFLP and AFLP markers   总被引:20,自引:3,他引:17  
 A near-saturated sorghum genetic linkage map was produced using RFLP, AFLP and morphological markers. First a composite, essentially RFLP-based genetic linkage map was obtained from analyses of two recombinant inbred populations. This map includes 343 loci for 11 linkage groups spanning 1352 cM. Since this map was constructed with many previously mapped heterologous probes, it offers a good basis for synteny studies. Separately, an AFLP map was obtained from the analysis of 168 bands revealed from 12 primer pair combinations. It includes 137 loci for 11 linkage groups spanning 849 cM. Taking into account the different data sets, we constructed a combined genetic linkage map including 443 loci spanning 1899 cM. Two main features are to be noted: (1) the distribution of AFLPs along the genome is not uniform; (2) an important stretching of the former core map is induced after adding the AFLPs. Received: 10 May 1998 / Accepted: 13 July 1998  相似文献   

18.
We compared the genetic variation of Pinus pinaster populations using amplified fragment length polymorphism (AFLP) and chloroplast simple-sequence repeat (cpSSR) loci. Populations' levels of diversity within groups were found to be similar with AFLPs, but not with cpSSRs. The high interlocus variance associated with the AFLP loci could account for the lack of differences in the former. Although AFLPs revealed much lower genetic diversity than cpSSRs, the levels of among-population differentiation found with the two types of marker were similar, provided that loci showing fewer than four null-homozygotes, in any population, were pruned from the AFLP data. Moreover, the French and Portuguese populations were clearly differentiated from each other, with both markers. The Mantel test showed that the genetic distance matrix calculated using the AFLP data was correlated with the matrix derived from the cpSSRs. Because of the concordance found between markers we conclude that gene flow was indeed the predominant force shaping nuclear and chloroplastic genetic variation of the populations within regions, at the geographical scale studied.  相似文献   

19.
The most economically important group of species in the genus Amaranthus is the A. hybridus species complex, including three cultivated grain amaranths, A. cruentus, A. caudatus, and A. hypochondriacus, and their putative wild progenitors, A. hybridus, A. quitensis, and A. powellii. Taxonomic confusion exists among these closely related taxa. Internal transcribed spacer (ITS) of nuclear ribosomal DNA, amplified fragment length polymorphism (AFLP), and double-primer fluorescent intersimple sequence repeat (ISSR) were employed to reexamine the taxonomic status and phylogenetic relationships of grain amaranths and their wild relatives. Low ITS divergence in these taxa resulted in poorly resolved phylogeny. However, extensive polymorphisms exist at AFLP and ISSR loci both within and among species. In phylogenetic trees based on either AFLP or ISSR or the combined data sets, nearly all intraspecific accessions can be placed in their corresponding species clades, indicating that these taxa are well-separated species. The AFLP trees share many features in common with the ISSR trees, both showing a close relationship between A. caudatus and A. quitensis, placing A. hybridus in the same clade as all grain amaranths, and indicating that A. powellii is the most divergent taxon in the A. hybridus species complex. This study has demonstrated that both AFLP and double-primer fluorescent ISSR have a great potential for generating a large number of informative characters for phylogenetic analysis of closely related species, especially when ITS diversity is insufficient.  相似文献   

20.
中国食用向日葵种质资源遗传变异的RAPD及AFLP分析   总被引:7,自引:0,他引:7  
本研究采用RAPD和AFLP方法对23个中国不同地区的食用向日葵(Helianthus annuus L.)骨干品种进行了遗传变异分析,同时对两种标记系统进行了比较。26个RAPD引物产生了总计192条DNA条带,大小分布 于0.26kb-1.98kb之间,其中165条(86.12%)具有多态性,每条引物产生DNA条带的平均数为7.38。8对AFLP引物组合共产生了576条带,分布于100bp-500bp之间,其中的341条具有多态性,多态百分率为76.00%,每对引物组合产生DNA条带的平均数为72。RAPD方法检测的每位点有效等位基因数(1.76)大于AFLP(1.65),AFLP标记位点的平均多态性信息量(PIC)(0.38)低于RAPD标记位点PIC(0.41),但AFLP标记具有很高的多态性检测效率(Ai=38.52)。用RAPD标记分析23个食用向日葵材料的亲缘关系,Nei氏相似性系数分布在47.84%-82.06%,平均相似性系数为0.6495,而采用AFLP的Nei氏相似性系数分布在54.15%-83.52%,平均相似性系数为0.6884。RAPD数据的标准差为0.13,而AFLP数据的标准差为0.08。因此,采用RAPD和AFLP方法分析食用向日葵遗传变异,RAPD标记具有较低相似性系数和较高方差而AFLP则相反。源于两种不同标记的遗传相似矩阵的相关系数为0.51,说明采用RAPD和AFLP系统分析食用向日葵遗传变异得到的结果有一定的相关性,无论采用RAPD还是AFLP标记进行聚类分析,都将23个不同基因型的食用向日葵材料分成了三个类群。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号