首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Locule structure and organization were studied in vivo and in vitro to determine whether the disposition of pollen within barley anthers affected the response of pollen in culture. Following release from the meiotic tetrads, juvenile barley microspores become peripherally organized around the locule, with the single pollen pore oriented towards the tapetum. Scanning electron micrographs of transverse sections from freeze fractured anthers showed that some microspores failed to locate the tapetal surface and occupied a position in the centre of the locule where they continued to develop as small, abnormal pollen grains (dimorphic pollen). Previous evidence has suggested that in some species dimorphic pollen could be the source of embryonic pollen in vitro. Cultured anthers frequently dehisced to reveal a mass of dividing pollen grains, however those anthers that remained intact retained the original locule structure and could be freeze fractured permitting examination of the developing pollen in situ. This showed that pollen embryogenesis was not restricted to dimorphic pollen, and that any grain could become Embryogenic irrespective of position.  相似文献   

3.
In maize (Zea mays L.), GSp1, the predominant GS isozyme of the developing kernel, is abundant in the pedicel and pericarp, but absent from the endosperm and embryo. Determinations of GSp1 tissue distribution in vegetative tissues have been limited thus far to root and leaves, where the isozyme is absent. However, the promoter from the gene encoding GSp1 has been shown to drive reporter gene expression not only in the maternal seed-associated tissues in transgenic maize plants, but also in the anthers, husks and pollen (Muhitch et al. 2002, Plant Sci 163: 865-872). Here we report chromatographic evidence that GSp1 resides in immature tassels, dehiscing anthers, kernel glumes, ear husks, cobs and stalks of maize plants, but not in mature, shedding pollen grains. RNA blot analysis confirmed these biochemical data. In stalks, GSp1 increased in the later stages of ear development, suggesting that it plays a role in nitrogen remobilization during grain fill.  相似文献   

4.
To test the hypothesis that the rapid swelling of pollen grainsdriven by potassium movement opens the septum in anthers ofpoaceous plants, we studied (1) the behaviour of pollen grainsduring unfolding of the locule and (2) the distribution of potassiumin the locule in two-rowed barley. In the first experiment,the unfolding of decapitated anthers was observed. The pollengrains paved the inner wall of the locule during the unfoldingprocess, suggesting that the pollen grains bend the locule walloutward when they adhere to the wall. In the second experiment,the distribution of potassium in transverse sections of loculesin dehisced and indehisced anthers was observed. In indehiscedanthers, potassium was detected outside the pollen grains. Incontrast, in dehisced anthers, potassium was detected insidepollen grains. This suggested potassium ions moved from theinter-pollen space (locular fluid) into the pollen grains inthe locule at the time of pollen-grain swelling. Copyright 2000Annals of Botany Company Hordeum vulgare L., locule unfolding, pollen grain swelling, potassium ion, two-rowed barley  相似文献   

5.
6.
Cereal seed development depends on the intimate interaction of filial and maternal tissues, ensuring nourishment of the new generation. The gene jekyll, which was identified in barley (Hordeum vulgare), is preferentially expressed in the nurse tissues. JEKYLL shares partial similarity with the scorpion Cn4 toxin and is toxic when ectopically expressed in Escherichia coli and tobacco (Nicotiana tabacum). In barley, jekyll is upregulated in cells destined for autolysis. The gene generates a gradient of expression in the nucellar projection, which mediates the maternal-filial interaction during seed filling. Downregulation of jekyll by the RNA interference technique in barley decelerates autolysis and cell differentiation within the nurse tissues. Flower development and seed filling are thereby extended, and the nucellar projection no longer functions as the main transport route for assimilates. A slowing down in the proliferation of endosperm nuclei and a severely impaired ability to accumulate starch in the endosperm leads to the formation of irregular and small-sized seeds at maturity. Overall, JEKYLL plays a decisive role in the differentiation of the nucellar projection and drives the programmed cell death necessary for its proper function. We further suggest that cell autolysis during the differentiation of the nucellar projection allows the optimal provision of basic nutrients for biosynthesis in endosperm and embryo.  相似文献   

7.
Pollen coat contains ingredients that interact with the stigma surface during sexual reproduction. In maize (Zea mays L.) pollen coat, the predominant protein is a 35-kDa endoxylanase, whose mRNA is located in the tapetum cells enclosing the maturing pollen in the anthers. This 2.0-kb mRNA was found to have an open reading frame of 1,635 nucleotides encoding a 60-kDa pre-xylanase. In developing anthers, the pre-xylanase protein appeared prior to the 35-kDa xylanase protein and enzyme activity and then peaked and declined, whereas the 35-kDa xylanase protein and activity continued to increase until anther maturation. An acid protease in the anther extract converted the inactive pre-xylanase to the active 35-kDa xylanase in vitro. The protease activity was inhibited by inhibitors of serine proteases but unaffected by inhibitors of cysteine, aspartic, or metallic proteases. Sequence analysis revealed that the 60-kDa pre-xylanase was converted to the 35-kDa xylanase with the removal of 198 and 48 residues from the N and C termini, respectively. During in vitro and in vivo conversions, no intermediates of 60-35 kDa were observed, and the 35-kDa xylanase was highly stable. The pre-xylanase was localized in the tapetum-containing anther wall, whereas the 35-kDa xylanase was found in the pollen coat. The significance of having a large non-active pre-xylanase and the mode of transfer of the xylanase to the pollen coat are discussed. A gene encoding the barley (Hordeum vulgare L.) tapetum xylanase was cloned; this gene and the gene encoding the seed aleurone-layer xylanase had strict tissue-specific expressions.  相似文献   

8.
9.
Reproductive stage water stress leads to spikelet sterility in wheat. Whereas drought stress at anthesis affects mainly grain size, stress at the young microspore stage of pollen development is characterized by abortion of pollen development and reduction in grain number. We identified genetic variability for drought tolerance at the reproductive stage. Drought‐tolerant wheat germplasm is able to maintain carbohydrate accumulation in the reproductive organs throughout the stress treatment. Starch depletion in the ovary of drought‐sensitive wheat is reversible upon re‐watering and cross‐pollination experiments indicate that the ovary is more resilient than the anther. The effect on anthers and pollen fertility is irreversible, suggesting that pollen sterility is the main cause of grain loss during drought conditions in wheat. The difference in storage carbohydrate accumulation in drought‐sensitive and drought‐tolerant wheat is correlated with differences in sugar profiles, cell wall invertase gene expression and expression of fructan biosynthesis genes in anther and ovary (sucrose : sucrose 1‐fructosyl‐transferase, 1‐SST; sucrose : fructan 6‐fructosyl‐transferase, 6‐SFT). Our results indicate that the ability to control and maintain sink strength and carbohydrate supply to anthers may be the key to maintaining pollen fertility and grain number in wheat and this mechanism may also provide protection against other abiotic stresses.  相似文献   

10.
Transport of photoassimilates from leaf tissues (source regions) to the sink organs is essential for plant development. Here, we show that a phytohormone, the brassinosteroids (BRs) promotes pollen and seed development in rice by directly promoting expression of Carbon Starved Anther (CSA) which encodes a MYB domain protein. Over‐expression of the BR‐synthesis gene D11 or a BR‐signaling factor OsBZR1 results in higher sugar accumulation in developing anthers and seeds, as well as higher grain yield compared with control non‐transgenic plants. Conversely, knockdown of D11 or OsBZR1 expression causes defective pollen maturation and reduced seed size and weight, with less accumulation of starch in comparison with the control. Mechanically, OsBZR1 directly promotes CSA expression and CSA directly triggers expression of sugar partitioning and metabolic genes during pollen and seed development. These findings provide insight into how BRs enhance plant reproduction and grain yield in an important agricultural crop.  相似文献   

11.
12.
13.
Vergne P  Dumas C 《Plant physiology》1988,88(4):969-972
Procedures have been designed to isolate viable immature male gametophytes from wheat (Triticum aestivum L.) anthers of different stages of development. Maceration of anthers by a micro-blender allowed for the release of numerous intact vacuolate microspores. Tris-buffered media prevented tricellular pollen grains from bursting during the isolation procedure. Proteins from the undamaged male gametophytes have been analyzed by isoelectric focusing and sodium dodecyl sulfate-polyacryl-amide gel electrophoresis. A set of new proteins was detected at the onset of the second pollen grain mitosis. The results demonstrate the opportunity for studies on haploid gene expression at the translational level.  相似文献   

14.
Gibberellin regulates post-microsporogenesis processes in petunia anthers   总被引:3,自引:0,他引:3  
Previous studies have suggested that gibberellins (GAs) are produced in petunia anthers and transported to the corolla to induce growth and pigmentation. In this work, we studied the role of GA in the regulation of anther development. When petunia plants were treated with the GA-biosynthesis inhibitor paclobutrazol, anther development was arrested. Microscopic analysis of these anthers revealed that paclobutrazol inhibits post-meiotic developmental processes. The treated anthers contained pollen grains but the connective tissue and tapetum cells were degenerated. A similar phenotype was obtained when the Arabidopsis GA-signal repressor, SPY, was over-expressed in transgenic petunia plants, i.e. anther development was arrested following microsporogenesis. The expression of the GA-induced gene, GIP , can be used in petunia as a molecular marker to study GA responses. GA3 treatment of young anthers promoted, and paclobutrazol inhibited, GIP expression, suggesting that the hormone controls the natural activation of the gene in the anthers. Analyses of GIP expression during anther development revealed that the gene is induced only after microsporogenesis. This observation further suggests a role for GA in the regulation of post-meiotic processes during petunia anther development.  相似文献   

15.
Summary In the past, in vitro cultures of excised anthers and isolated pollen have been used to study normal male sexual development (gametophytic development) and, conversely, to produce and study haploid plant formation (sporophytic development). For years both branches have existed side by side, without much interaction. Today, a synthesis of the two branches is possible as well as necessary. Recent advances in the technique of isolated pollen culture in the tobacco plant model (Nicotiana tabacum L.) enable the researcher to strictly control pollen development in both the gametophytic and sporophytic direction. The nutritional status of the immature pollen grain at a particular stage of development provides the trigger for its development into one of the two phases found in the alternation of generations undergone by higher plants. In particular, a hunger signal is responsible for the derepression of cell division activity and the start of embryogenesis. Pollen starvation can occur in isolated pollen cultures in sucrose-free media, in excised anthers and flowers, and, under specific growth conditions, during pollen development in vivo.  相似文献   

16.
At the northern limit of its distribution, arctic dwarf birch, Betula glandulosa, shows nearly complete absence of sexual reproduction (i.e., <;0.5% viable samaras) and maintains its populations vegetatively. To investigate the possible role of pollination dynamics in the loss of sexual reproduction, pollination biology of arctic dwarf birch was compared at two locations: Tarr Inlet on Baffin Island, Northwest Territories near the northern limit of the species, and Kuujjuaq, Quebec in the center of its distribution where sexual reproduction is the primary mode of reproduction. Relative production of staminate and pistillate flowers, pollen rain, pollen viability, and stigmatic pollen loads throughout pollen dispersal were compared. Plants at Tarr Inlet produced 15%–30% of pollen produced at Kuujjuaq, both as a result of a lower density of staminate catkins and less pollen per catkin. Potential seed productivity is limited at the northern limit because pistillate catkins produce 50% fewer flowers in the north than in the south. While stigmatic pollen loads were similar at both sites, lower pollen viability (68% vs. 93%) and a higher probability of geitonogamous pollen due to clonal growth pattern reduced fertilization success at the northern site. These data suggest that lack of sexual reproduction in B. glandulosa at its northern limit is in part due to pollen limitation.  相似文献   

17.
钙在高等植物中被称为第二信使,与植物的有性生殖有关。为了研究水稻(Oryza sativa L.)花药中钙的定位与花粉败育的关系,利用焦锑酸钾沉淀法研究了非花粉型细胞质雄性不育系G37A及其保持系G37B花药的发育过程及其细胞中Ca^2+ 的分布变化。研究发现,在2个材料间花药中钙的分布存在大量差异。G37B的可育花药在花粉母细胞时期及二分体时期,很少看到有Ca^2+的沉积;而在单核花粉时期,Ca^2+沉积急速地增加,主要定位在绒毡层细胞、花粉外壁外层及乌氏体的表面;随后花药壁上沉积的Ca^2+减少而花粉的外壁外层仍然有很多Ca^2+沉积物。相反,G37A的不育花药在花粉母细胞时期和二分体时期有大量的Ca^2+沉积在小孢子母细胞和花药壁,中间层和绒毡层特别多。在二分体时期之后,不育花药的Ca^2+沉积减少,特别是绒毡层内切向质膜附近的Ca^2+几乎消失。但是同时期的可育花药中,有大量的Ca^2+沉积在绒毡层。不育花药的Ca^2+沉积在开花几天后消失。根据研究结果推测在不育花药发育早期中更多的钙离子与花粉败育有一定的关系。  相似文献   

18.
19.
20.
Several processes during sexual reproduction in higher plants involve the movement of water between cells or tissues. Before flower anthesis, anther and pollen dehydration takes place before the release of mature pollen at dehiscence. Aquaporins represent a class of proteins that mediates the movement of water over cellular membranes. Aquaporins of the plasmamembrane PIP2 family are expressed in tobacco (Nicotiana tabacum) anthers and may therefore be involved in the movement of water in this organ. To gain more insight into the role these proteins may play in this process, we have analyzed their localization using immunolocalizations and generated plants displaying RNA interference of PIP2 aquaporins. Our results indicate that PIP2 protein expression is modulated during anther development. Furthermore, in tobacco PIP2 RNA interference plants, anther dehydration was slower, and dehiscence occurred later when compared with control plants. Together, our results suggest that aquaporins of the PIP2 class are required for efficient anther dehydration prior to dehiscence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号