首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advances in genome sequencing technologies have enabled researchers and breeders to rapidly associate phenotypic variation to genome sequence differences. We recently took advantage of next-generation sequencing technology to develop MutMap, a method that allows rapid identification of causal nucleotide changes of rice mutants by whole genome resequencing of pooled DNA of mutant F2 progeny derived from crosses made between candidate mutants and the parental line. Here we describe MutMap+, a versatile extension of MutMap, that identifies causal mutations by comparing SNP frequencies of bulked DNA of mutant and wild-type progeny of M3 generation derived from selfing of an M2 heterozygous individual. Notably, MutMap+ does not necessitate artificial crossing between mutants and the wild-type parental line. This method is therefore suitable for identifying mutations that cause early development lethality, sterility, or generally hamper crossing. Furthermore, MutMap+ is potentially useful for gene isolation in crops that are recalcitrant to artificial crosses.  相似文献   

2.
Contemporary crop improvement relies on the genetic analysis of progeny derived from a cross between different lines with contrasting phenotypes. Such analysis allowed positioning of genes for agronomically important traits, enabling development of DNA makers for marker-assisted selection (MAS). So far the identification of loci for desirable traits have been carried out by linkage analysis using DNA markers. This process required the development of DNA markers that are distributed over the genome as well as the genotyping of each progeny. Due to recent development in next generation sequencing (NGS) technology, whole genome sequencing (WGS) is becoming easier and cheaper. Using NGS, we developed a new method called MutMap that allows rapid isolation of useful alleles from rice mutant lines. An important feature of MutMap is that it does not require marker development. We foresee that the era of genetic markers will be eventually eclipsed by that of WGS applied to all the individuals in the breeding processes.  相似文献   

3.
Stepochkin PI  Artemova GV 《Genetika》2006,42(12):1691-1693
The dominant mutant genes responsible for the spring habit were studied in seven rye plants according to the developed scheme of two-step crosses and analysis of the F2 progeny. The genotypes with a particular genetic formula (heterozygote) were obtained by crossing the studied plants with the winter rye Korotkostebel'naya 69 carrying the recessive genes that control the winter habit of plants. Heterozygotes yielded by different combinations were crossed with each other. The F1 hybrids were either self-pollinated to obtain F2 progeny or crossed with the winter rye. Analysis of the progeny suggests that all seven plants carry the same gene.  相似文献   

4.
FLP recombinase-mediated site-specific recombination in rice   总被引:3,自引:0,他引:3  
The feasibility of using the FLP/ FRT site-specific recombination system in rice for genome engineering was evaluated. Transgenic rice plants expressing the FLP recombinase were crossed with plants harbouring the kanamycin resistance gene ( neomycin phosphotransferase II , nptII ) flanked by FRT sites, which also served to separate the corn ubiquitin promoter from a promoterless gusA . Hybrid progeny were tested for excision of the nptII gene and the positioning of the ubiquitin promoter proximal to gusA . While the hybrid progeny from various crosses exhibited β-glucuronidase (GUS) expression, the progeny of selfed parental rice plants did not show detectable GUS activity. Despite the variable GUS expression and incomplete recombination displayed in hybrids from some crosses, uniform GUS staining and complete recombination were observed in hybrids from other crosses. The recombined locus was shown to be stably inherited by the progeny. These data demonstrate the operation of FLP recombinase in catalysing excisional DNA recombination in rice, and confirm that the FLP/ FRT recombination system functions effectively in the cereal crop rice. Transgenic rice lines expressing active FLP recombinase generated in this study provide foundational stock material, thus facilitating the future application and development of the FLP/ FRT system in rice genetic improvement.  相似文献   

5.
A rice (Oryza sativa L.) mutant displaying defects in panicle development was identified among transformants in a transgenic mutagenlzed experiment using an antlsense cDNA library prepared from young rice panicles. In the mutant, the average splkelet number was reduced to 59.8 compared with 104.3 in wild-type plants. In addition, the seed-setting rate of the mutant was low (39.3%) owing to abnormal female development. Genetic analysis of T1 and T2 progeny showed that the traits segregated In a 3 (mutant) : 1 (wild type) ratio and the mutation was cosegregated with the transgene. Southern blot and thermal asymmetric interlaced polymerase chain reaction analyses showed that the mutant had a single T-DNA insertion on chromosome 5, where no gene was tagged. Sequencing analysis found that the transgenic antisense cDNA was derived from a gene encoding an F-box protein in chromosome 7 with unidentified function. This and another four homologous genes encoding putative F-box proteins form a gene cluster. These results indicate that the phenotyplc mutations were most likely due to the silencing effect of the expressed transgenic antisense construct on the member(s) of the F-box gene cluster.  相似文献   

6.
Many domesticated crops are derived from species whose life history includes weedy characteristics, such as the ability to vary branching patterns in response to environmental conditions. However, domesticated crop plants are characterized by less variable plant architecture, as well as by a general reduction in vegetative branching compared to their progenitor species. Here we examine weedy green millet and its domesticate foxtail millet that differ in the number of tillers (basal branches) and axillary branches along each tiller. Branch number in F(2:3) progeny of a cross between the two species varies with genotype, planting density, and other environmental variables, with significant genotype-environment interactions (GEI). This is shown by a complex pattern of reaction norms and by variation in the pattern of significant quantitative trait loci (QTL) amongst trials. Individual and joint analyses of high and low density trials indicate that most QTL have significant GEI. Dominance and epistasis also explain some variation in branching. Likely candidate genes underlying the QTL (based on map position and phenotypic effect) include teosinte branched1 and barren stalk1. Phytochrome B, which has been found to affect response to shading in other plants, explains little or no variation. Much variation in branching is explained by QTL that do not have obvious candidate genes from maize or rice.  相似文献   

7.
Liang F  Xin X  Hu Z  Xu J  Wei G  Qian X  Yang J  He H  Luo X 《植物学报(英文版)》2011,53(4):312-323
A dwarf mutant, designated LB4D, was obtained among the progeny of backcrosses to a wild rice introgression line. Genetic analysis of LB4D indicated that the dwarf phenotype was controlled by a single semidominant dwarfing gene, which was named LB4D. The mutants were categorized as dn-type dwarf mutants according to the pattern of internode reduction. In addition, gibberellin (GA) response tests showed that LB4D plants were neither deficient nor insensitive to GA. This study found that tiller formation by LB4D plants was decreased by 40% compared with the wild type, in contrast to other dominant dwarf mutants that have been identified, indicating that a different dwarfing mechanism might be involved in the LB4D dominant mutant. The reduction of plant height in F(1) plants ranged from 27.9% to 38.1% in different genetic backgrounds, showing that LB4D exerted a stronger dominant dwarfing effect. Using large F(2) and F(3) populations derived from a cross between heterozygous LB4D and the japonica cultivar Nipponbare, the LB4D gene was localized to a 46 kb region between the markers Indel 4 and Indel G on the short arm of chromosome 11, and four predicted genes were identified as candidates in the target region.  相似文献   

8.
利用人工控制光周期程序(简称SPAC)处理或在北京自然长日下栽培,考察了15个群体的自交结实率和正常花粉率频率分布,得到了如下结果。 1.F_1的育性正常。F_1群体的表现型值呈双峰连续分布。分离出1个无法准确划分的“败育群”;2.在F_2的“败育群”或农垦58原种S群体内,雄性彻底败育的个体只是少数,其余多数个体败育不完全,表现型值各不相同,在低值端呈连续分布;3.由F_1选出的光敏感雄性不育单株繁衍来的F_4家系群体,其表现型值依然分离,在低值端呈连续分布。雄性完全败育个体的比例在各家系、株系、甚至同一株系内的植株间存在差别;4.仅F_4家系群体中的1个株系。农垦58S或鄂宜105S群体内表现型值基本一致,雄性彻底败育了。作者认为,连续分布是水稻光敏感雄性不育初级群体表现型值分布的普遍形式。它多半产生于修饰基因分离、重组造成的基因型值的连续变异。  相似文献   

9.
D J Norman  C Fletcher  N Heintz 《Genomics》1991,9(1):147-153
The lurcher (Lc) mutant mouse strain exhibits postnatal degeneration of cerebellar Purkinje cells. We have typed progeny from an intersubspecific, phenotypic backcross at seven loci to develop a genetic linkage map which spans approximately 35 cM surrounding and including the Lc locus on mouse chromosome 6. [(Mus musculus castaneus x B6CBA-Aw-J/A-Lc)F1 x B6CBA-Aw-J/A]N2 progeny were scored visually for the lurcher phenotype and molecularly, through restriction fragment length polymorphism analysis, for six cloned markers. Two candidate genes, Npy and Pcp-1, which map to mouse chromosome 6 and which are expressed in the cerebellum, are demonstrated to be distinct from Lc. Three genes are shown to be closely linked to the Lc locus, and the map order cen-Cpa-Npy-Cbl-1-Lc-Igk, Fabpl-Pcp-1 is determined. The molecular genetic linkage map presented here represents progress toward isolating a clone of the Lc gene.  相似文献   

10.
Trichothecenes are a group of toxic secondary metabolites produced mainly by Fusarium graminearum (teleomorph: Gibberella zeae) during the infection of crop plants, including wheat, maize, barley, oats, rye and rice. Some fungal genes involved in trichothecene biosynthesis have been shown to encode regulatory proteins. However, the global regulation of toxin biosynthesis is still enigmatic. In addition to the production of secondary metabolites belonging to the trichothecene family, F. graminearum produces the red pigment aurofusarin. The gene regulation underlying the production of aurofusarin is not well understood. The velvet gene (veA) is conserved in various genera of filamentous fungi. Recently, the veA gene from Aspergillus nidulans has been shown to be the key component of the velvet complex regulating development and secondary metabolism. Using blast analyses, we identified the velvet gene from F. graminearum, FgVe1. Disruption of FgVe1 causes several phenotypic effects. However, the complementation of this mutant with the FgVe1 gene restores the wild-type phenotypes. The in vitro phenotypes include hyperbranching of the mycelium, suppression of aerial hyphae formation, reduced hydrophobicity of the mycelium and highly reduced sporulation. Our data also show that FgVe1 modulates the production of the aurofusarin pigment and is essential for the expression of Tri genes and the production of trichothecenes. Pathogenicity studies performed on flowering wheat plants indicate that FgVe1 is a positive regulator of virulence in F. graminearum.  相似文献   

11.
We characterized a spontaneous dwarf mutant showing extremely short internodes and dark green leaves originating from azuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) cultivar "Erimo-shouzu." F(1) plants of 3 cross combinations between the dwarf mutant and several representative wild-type plants, Erimo-shouzu, V. angularis accession Acc2265 and wild relative V. riukiuensis accession Acc2482, supported the dwarf genotype being recessive. In a total of 3328 F(2) progeny of these 3 crosses, 65 dwarfs (2.0%) and 5 chimeric dwarfs (0.2%) segregated and the remainder were wild-type plants (97.8%). In F(3) progeny derived from self-pollinated dwarf F(2) plants, we observed wild type (54.3%), dwarf (39.1%), and chimeric dwarf (6.5%) plants. Two types of chimeric plants were observed: dwarf branches on the axils of wild-type plant stems and wild-type branches on the axils of dwarf stems. In 21 dwarf F(2) plants, the dwarf trait cosegregated with simple sequence repeat marker CEDG154 on chromosome 4. Conversely, homozygote F(2) plants at this chromosomal segment from the dwarf mutant frequently (>90%) expressed the wild-type phenotype. We concluded that the dwarf phenotype is mitotically and meiotically inheritable and controlled by a single genetically unstable locus, designated Azuki Dwarf1 (AD1), which converts between 2 phenotypic states bidirectionally.  相似文献   

12.
Epistasis plays an important role in the genetic basis of rice yield traits. Taking interactions into account in breeding programs will help the development of high-yielding rice varieties. In this study, three sets of near isogenic lines (NILs) targeting three QTLs for spikelets per panicle (SPP), namely qSPP1, qSPP2 and qSPP7, which share the same Zhenshan 97 genetic background, were used to produce an F 2 population in which the three QTLs segregated simultaneously. The genotypes of the individual F 2 plants at the three QTLs were replaced with three markers that are closely linked to the corresponding QTLs. These QTLs were validated in the F 2 and F 3 popula- tions at the single marker level. qSPP7 exhibited major pleiotropic effects on SPP, plant height and heading date. Multifactor analysis of variance was performed for the F 2 population and its progeny. Additive × additive interaction between qSPP2 and qSPP7 had significant effects on SPP in both the F 2 population and its progeny. Both additive and additive × additive interactions could explain about 73% of the total SPP phenotypic variance. The SPP performance of 27 three-locus combinations was ranked and favorable combinations were rec- ommended for rice breeding in different ecosystems.  相似文献   

13.
14.
Liu CH  Li XY  Zhang JH  Lin DZ  Dong YJ 《遗传》2012,34(2):223-229
从粳稻"嘉花1号"60Coγ射线辐照的后代中筛选到一个叶绿素缺失黄叶突变体(yl11),与野生型"嘉花1号"相比该突变体表现为全生育期植株叶片呈黄色,叶绿素含量以及净光合速率明显下降,叶绿体发育不完善,并且伴随着株高等主要农艺性状的变化。遗传分析表明,该突变性状受一对隐性核基因(yl11)控制。该突变体与籼稻"培矮64S"杂交生产的F2、F3群体中的分离出突变体型920个单株作为定位群体,利用SSR和InDel分子标记将yl11基因定位在水稻第11染色体长臂上的MM2199和ID21039分子标记之间,其物理距离约为110kb,目前该区域内没有发现与水稻叶绿素合成/叶绿体发育相关已知功能基因。研究结果为今后对该基因的克隆和功能分析奠定了基础。  相似文献   

15.
通过对籼稻黄华占EMS(甲磺酸乙酯)诱变, 筛选得到一隐性核不育的水稻雄性不育突变体osms55, 遗传分析表明该突变体为单基因控制的隐性核不育, 采用高通量的Illumina Infinium iSelect SNP(50 K)芯片检测技术鉴定该突变体的遗传背景, 确认该突变体的遗传背景与黄华占一致。文章利用改进的MutMap方法成功克隆该雄性不育基因, 突变位点与突变表型的共分离分析表明LOC_Os02g40450(MER3)是控制osms55突变体雄性不育的基因, 该基因的剪切识别位点发生变异后导致剪切异常, 造成第5外显子缺失15个碱基, 从而产生雄性不育。改进的MutMap方法无需精确组装的野生型基因组序列作对照, 而是通过将定位群体中有突变表型植株的DNA pool和野生型植株DNA的重测序结果分别与日本晴参考基因组进行比对, 然后再比较突变体和野生型的差异SNP来确定候选基因, 该方法大大降低了野生型基因组测序和组装成本, 进一步扩大了MutMap方法的应用范围。  相似文献   

16.
Monocots and dicots have diverged for 120 million years. The floral morpha of cereals isunique and much different from that of dicot plants. Nevertheless, it has been found that most genes controlling flower development share a conserved sequence called MADS-box[1]. Therefore,it is likely that monocots and dicots could have similar basic characteristics of flower developmentbut the mechanisms of genetic regulation for flowering induction and floral differentiation might be different[2,3]. Du…  相似文献   

17.
A mutant of spikelet differentiation in rice called frizzle panicle (fzp) was discovered in the progeny of a cross between Oryza sativa ssp. indica cv. V20B and cv. Hua1B. The mutant exhibits normal plant morphology but has apparently fewer tillers. The most striking change in fzp is that its spikelet differentiation is completely blocked, with unlimited subsequent rachis branches generated from the positions where spikelets normally develop in wild-type plants. Genetic analysis suggests that fzp is controlled by a single recessive gene, which is temporarily named fzp (t). Based on its mutant phenotype, fzp (t) represents a key gene controlling spikelet differentiation. Some F2 mutant plants derived from various genetic background appeared as the "middle type", suggesting that the action of fzp (t) is influenced by the presence of redundant, modifier or interactive genes. By using simple sequence repeat (SSR) markers and bulked segregant analysis (BSA) method, fzp (t) gene was mapped in the terminal region of the long arm of chromosome 7, with RM172 and RM248 on one side, 3.2 cM and 6.4 cM from fzp (t), and RM18 and RM234 on the other side, 23.1 cM and 26.3 cM from fzp(t), respectively. These results will facilitate the positional cloning and function studies of the gene.  相似文献   

18.
19.
Aluminium (Al) ion limits root growth of plants in acidic soils, and rice exhibits the highest level of Al-tolerance among graminous crops. To elucidate Al-tolerance mechanisms in rice, response to Al was compared between rice (Oryza sativa L., cv. Nipponbare) and wheat (Triticum aestivum L., cv. ET8), focusing on seminal root growth at seedling stage and germination stage. At seedling stage, rice and wheat were similarly sensitive to Al in both dose- and time-dependent manner during a 24-h Al exposure. On the contrary, at germination stage, rice was more tolerant to Al than wheat, and wheat roots displayed the loss of plasma membrane integrity more extensively than rice. A rice mutant exhibiting Al hypersensitivity at germination stage was obtained by screening 42,840 R2 progeny derived from the regenerated R0 plants of Nipponbare and thereafter confirmation of the mutant phenotype in R3 progeny. At germination stage, root growth of the mutant was strongly inhibited in the presence of Al but not in the absence of Al. However, at seedling stage, root growth of the mutant and wild type was similarly tolerant to Al. Taken together, we conclude that rice possesses Al-tolerant function that is under genetic control and specifically operates for root growth at germination stage, making rice more tolerant to Al than wheat.  相似文献   

20.
Volis S 《The New phytologist》2011,192(1):237-248
? Both genetic drift and natural selection result in genetic/phenotypic differentiation over space. I analyzed the role of local adaptation in the genetic differentiation of populations of the annual grass Hordeum spontaneum sampled along an aridity gradient. ? The study included the introduction of plants having desert vs nondesert origin into natural (desert) environment, analysis of population differentiation in allozymes and random amplified polymorphic DNA (RAPD) markers vs phenotypic traits (Q(ST) -F(ST) comparison), and planting interpopulation hybrids under simulated desert conditions in a glasshouse. ? The results of the home advantage test, Q(ST) -F(ST) comparison and crossbreeding were consistent with local adaptation; that is, that differentiation of the desert plants from plants of nondesert origin in phenotypic traits was adaptive, giving them home advantage. Each method used provided additional, otherwise unavailable, information, meaning that they should be viewed as complementary rather than alternative approaches. ? Gene flow from adjacent populations (i.e. populations experiencing the desert environment) via seeds (but not pollen) had a positive effect on fitness by enhancing natural selection and counteracting drift. At the same time, the effect of genes from the species distributional core (nondesert plants) by either seed or pollen had a negative fitness effect despite its enriching effect on neutral diversity. The pattern of outbreeding depression observed in interpopulation hybrids (F(1) ) and their segregating progeny (F(2) ) was inconsistent with underdominance, but indicated the presence of additive, dominance and epistatic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号