首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several rye growing regions of Central Europe suffered from severe drought stress in the last decade. Rye is typically grown on sandy soils with low water-holding capacity in areas with low rainfall, thus drought-tolerant varieties are urgently needed. The main objective of our study was to evaluate the drought stress tolerance of rye hybrids using large-scaled field experiments. Two biparental populations (Pop-A, Pop-B) each consisting of 220 F2:4 lines from the Petkus gene pool and their parents were evaluated for grain yield testcross performance under irrigated (I) and rainfed (R) regime in six environments. We observed for most environments severe drought stress leading to an average grain yield reduction of 23.8 % for rainfed compared to irrigated regime in drought stress environments. A decomposition of the variance revealed significant (P < 0.01) genotypic and genotype × environment interaction variances but only a minor effect of drought stress on the ranking of the genotypes with regard to grain yield. In conclusion, separate breeding programs for drought-tolerant genotypes are not superior to the currently practiced selection under rainfed conditions without irrigation in hybrid rye breeding in Central Europe.  相似文献   

2.

Key message

Association analyses accounting for population structure and relative kinship identified eight SSR markers ( p < 0.01) showing significant association ( R 2  = 18 %) with nine agronomic traits in foxtail millet.

Abstract

Association mapping is an efficient tool for identifying genes regulating complex traits. Although association mapping using genomic simple sequence repeat (SSR) markers has been successfully demonstrated in many agronomically important crops, very few reports are available on marker-trait association analysis in foxtail millet. In the present study, 184 foxtail millet accessions from diverse geographical locations were genotyped using 50 SSR markers representing the nine chromosomes of foxtail millet. The genetic diversity within these accessions was examined using a genetic distance-based and a general model-based clustering method. The model-based analysis using 50 SSR markers identified an underlying population structure comprising five sub-populations which corresponded well with distance-based groupings. The phenotyping of plants was carried out in the field for three consecutive years for 20 yield contributing agronomic traits. The linkage disequilibrium analysis considering population structure and relative kinship identified eight SSR markers (p < 0.01) on different chromosomes showing significant association (R 2 = 18 %) with nine agronomic traits. Four of these markers were associated with multiple traits. The integration of genetic and physical map information of eight SSR markers with their functional annotation revealed strong association of two markers encoding for phospholipid acyltransferase and ubiquitin carboxyl-terminal hydrolase located on the same chromosome (5) with flag leaf width and grain yield, respectively. Our findings on association mapping is the first report on Indian foxtail millet germplasm and this could be effectively applied in foxtail millet breeding to further uncover marker-trait associations with a large number of markers.  相似文献   

3.
A pearl millet inbred germplasm association panel (PMiGAP) comprising 250 inbred lines, representative of cultivated germplasm from Africa and Asia, elite improved open-pollinated cultivars, hybrid parental inbreds and inbred mapping population parents, was recently established. This study presents the first report of genetic diversity in PMiGAP and its exploitation for association mapping of drought tolerance traits. For diversity and genetic structure analysis, PMiGAP was genotyped with 37 SSR and CISP markers representing all seven linkage groups. For association analysis, it was phenotyped for yield and yield components and morpho-physiological traits under both well-watered and drought conditions, and genotyped with SNPs and InDels from seventeen genes underlying a major validated drought tolerance (DT) QTL. The average gene diversity in PMiGAP was 0.54. The STRUCTURE analysis revealed six subpopulations within PMiGAP. Significant associations were obtained for 22 SNPs and 3 InDels from 13 genes under different treatments. Seven SNPs associations from 5 genes were common under irrigated and one of the drought stress treatments. Most significantly, an important SNP in putative acetyl CoA carboxylase gene showed constitutive association with grain yield, grain harvest index and panicle yield under all treatments. An InDel in putative chlorophyll a/b binding protein gene was significantly associated with both stay-green and grain yield traits under drought stress. This can be used as a functional marker for selecting high yielding genotypes with ‘stay green’ phenotype under drought stress. The present study identified useful marker-trait associations of important agronomics traits under irrigated and drought stress conditions with genes underlying a major validated DT-QTL in pearl millet. Results suggest that PMiGAP is a useful panel for association mapping. Expression patterns of genes also shed light on some physiological mechanisms underlying pearl millet drought tolerance.  相似文献   

4.

Key message

Water-soluble carbohydrate accumulation can be selected in wheat breeding programs with consideration of genetic × environmental interactions and relationships with other important characteristics such as relative maturity and nitrogen concentration, although the correlation between WSC traits and grain yield is low and inconsistent.

Abstract

The potential to increase the genetic capacity for water-soluble carbohydrate (WSC) accumulation is an opportunity to improve the drought tolerance capability of rainfed wheat varieties, particularly in environments where terminal drought is a significant constraint to wheat production. A population of elite breeding germplasm was characterized to investigate the potential for selection of improved WSC concentration and total amount in water deficit and well-watered environments. Accumulation of WSC involves complex interactions with other traits and the environment. For both WSC concentration (WSCC) and total WSC per area (WSCA), strong genotype × environment interactions were reflected in the clear grouping of experiments into well-watered and water deficit environment clusters. Genetic correlations between experiments were high within clusters. Heritability for WSCC was larger than for WSCA, and significant associations were observed in both well-watered and water deficit experiment clusters between the WSC traits and nitrogen concentration, tillering, grains per m2, and grain size. However, correlations between grain yield and WSCC or WSCA were weak and variable, suggesting that selection for these traits is not a better strategy for improving yield under drought than direct selection for yield.
  相似文献   

5.
Drought is a major abiotic stress factor limiting rice production in rainfed areas. In this study we identified a large-effect quantitative trait locus (QTL) associated with grain yield under stress in five different populations on chromosome 1. The effect of this QTL was further confirmed and characterized in five backcross populations in a total of sixteen stress and non-stress trials during 2006 and 2008. In all the stress trials (eight in total) qDTY1.1 showed strong association with grain yield explaining on average 58% of the genetic variation in the trait. Homozygotes for the tolerant parent allele (Apo) yielded on average 27% more than the susceptible parent allele (IR64) homozygotes. Using an Apo/3*IR64 population, the peak of this QTL (qDTY1.1) was mapped to an interval between RM486 and RM472 at 162.8?cM at a LOD score of 9.26. qDTY1.1 was strongly associated with plant height in all the environments; this was probably due to the presence of the sd1 locus in this genomic region. In a Vandana/3*IR64 population segregating for sd1, a strong relation between plant height and yield under stress was observed. The observed relation between increased height and drought tolerance is likely due to tight linkage between qDTY1.1 and sd1 and not due to pleiotrophy of sd1. Thus there is a possibility of combining reduced plant height and drought tolerance in rice. The large and consistent effect of qDTY1.1 across several genetic backgrounds and environments makes it a potential strong candidate for use in molecular breeding of rice for drought tolerance.  相似文献   

6.
Drought is a major abiotic stress limiting rice production and yield stability in rainfed ecosystems. Identifying quantitative trait loci (QTL) for rice yield and yield components under water limited environments will help to develop drought resilient cultivars using marker assisted breeding (MAB) strategy. A total of 232 recombinant inbred lines of IR62266/Norungan were used to map QTLs for plant phenology and production traits under rainfed condition in target population of environments. A total of 79 QTLs for plant phenology and production traits with phenotypic variation ranging from 4.4 to 72.8% were detected under non-stress and drought stress conditions across two locations. Consistent QTLs for phenology and production traits were detected across experiments and water regimes. The QTL region, RM204-RM197-RM217 on chromosome 6 was linked to days to 50% flowering and grain yield per plant under both rainfed and irrigated conditions. The same genomic region, RM585-RM204-RM197 was also linked to harvest index under rainfed condition with positive alleles from Norungan, a local landrace. QTLs for plant production and drought resistance traits co-located near RM585-RM204-RM197-RM217 region on chromosome 6 in several rice genotypes. Thus with further fine mapping, this region may be useful as a candidate QTL for MAB, map-based cloning of genes and functional genomics studies for rainfed rice improvement.  相似文献   

7.
Drought is a major constraint to common bean (Phaseolus vulgaris L.) production, especially in developing countries where irrigation for the crop is infrequent. The Mesoamerican genepool is the most widely grown subdivision of common beans that include small red, small cream and black seeded varieties. The objective of this study was to develop a reliable genetic map for a Mesoamerican × Mesoamerican drought tolerant × susceptible cross and to use this map to analyze the inheritance of yield traits under drought and fully irrigated conditions over 3 years of experiments. The source of drought tolerance used in the cross was the cream-seeded advanced line BAT477 crossed with the small red variety DOR364 and the population was made up of recombinant inbred lines in the F5 generation. Quantitative trait loci were detected by composite interval mapping for the traits of overall seed yield, yield per day, 100 seed weight, days to flowering and days to maturity for each field environment consisting of two treatments (irrigated and rainfed) and lattice design experiments with three repetitions for a total of six environments. The genetic map based on amplified fragment length polymorphism and random amplified polymorphic DNA markers was anchored with 60 simple sequence repeat (SSR) markers and had a total map length of 1,087.5 cM across 11 linkage groups covering the whole common bean genome with saturation of one marker every 5.9 cM. Gaps for the genetic map existed on linkage groups b03, b09 and b11 but overall there were only nine gaps larger than 15 cM. All traits were inherited quantitatively, with the greatest number for seed weight followed by yield per day, yield per se, days to flowering and days to maturity. The relevance of these results for breeding common beans is discussed in particular in the light of crop improvement for drought tolerance in the Mesoamerican genepool.  相似文献   

8.
Drought is a major constraint to rice (Oryza sativa L.) production in rainfed and poorly irrigated environments. Identifying genomic regions influencing the response of yield and its components to water deficits will aid our understanding of the genetic mechanism of drought tolerance (DT) of rice and the development of DT varieties. Grain yield (GY) and its components of a recombinant inbred population developed from a lowland rice and an upland rice were investigated under different water levels in 2003 and 2004 in a rainout DT screening facility. Correlation and path analysis indicated that spikelet fertility (SF) was particularly important for grain yield with direct effect (P=0.60) under drought stress, while spikelet number per panicle (SN) contributed the most to grain yield (P=0.41) under well-watered condition. A total of 32 quantitative trait loci (QTLs) for grain yield and its components were identified. The phenotypic variation explained by individual QTLs varied from 1.29% to 14.76%. Several main effect QTLs affecting SF, 1,000-grain weight (TGW), panicle number (PN), and SN were mapped to the same regions on chromosome 4 and 8. These QTLs were detected consistently across 2 years and under both water levels in this study. Several digenic interactions among yield components were also detected. The identification of genomic regions associated with GY and its components under stress will be useful to improve drought tolerance of rice by marker-aided approaches.G. H. Zou and H. W. Mei contribute equally to this work.  相似文献   

9.

Key message

A stable QTL that may be used in marker-assisted selection in wheat breeding programs was detected for yield, yield components and drought tolerance-related traits in spring wheat association mapping panel.

Abstract

Genome-wide association mapping has become a widespread method of quantitative trait locus (QTL) identification for many crop plants including wheat (Triticum aestivum L.). Its benefit over traditional bi-parental mapping approaches depends on the extent of linkage disequilibrium in the mapping population. The objectives of this study were to determine linkage disequilibrium decay rate and population structure in a spring wheat association mapping panel (n = 285–294) and to identify markers associated with yield and yield components, morphological, phenological, and drought tolerance-related traits. The study was conducted under fully irrigated and rain-fed conditions at Greeley, CO, USA and Melkassa, Ethiopia in 2010 and 2011 (five total environments). Genotypic data were generated using diversity array technology markers. Linkage disequilibrium decay rate extended over a longer genetic distance for the D genome (6.8 cM) than for the A and B genomes (1.7 and 2.0 cM, respectively). Seven subpopulations were identified with population structure analysis. A stable QTL was detected for grain yield on chromosome 2DS both under irrigated and rain-fed conditions. A multi-trait region significant for yield and yield components was found on chromosome 5B. Grain yield QTL on chromosome 1BS co-localized with harvest index QTL. Vegetation indices shared QTL with harvest index on chromosome 1AL and 5A. After validation in relevant genetic backgrounds and environments, QTL detected in this study for yield, yield components and drought tolerance-related traits may be used in marker-assisted selection in wheat breeding programs.  相似文献   

10.
Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.  相似文献   

11.
Yield of eight wheat cultivars was evaluated under rainfed and irrigated conditions in a Mediterranean environment. Variation in grain yield resulted from variation in both aboveground biomass production and in harvest index. Under rainfed compared to irrigated conditions, grain yield, biomass and days to heading were decreased, whereas harvest index was increased. Grain yield of the different cultivars under rainfed conditions correlated with that under irrigated conditions in one of the two years. Among cultivars, harvest index under rainfed and irrigated conditions were correlated in both years.Water was used more efficiently for biomass production, and equally efficiently for grain production, under irrigated compared to rainfed conditions. Under rainfed conditions, crop water use efficiency was higher for cultivars developed for rainfed environments than for those developed for high-rainfall or irrigated environments. Cultivars with low-rainfall target environments had the lowest evapotranspiration under rainfed conditions. Under rainfed conditions, differences between the cultivar groups in crop water use efficiency corresponded with trends in water use efficiency of individual plants and with the ratio of photosynthesis to transpiration, measured on plants grown in a growth room.Early in the season, water was used more efficiently for biomass production at high sowing densities than at low sowing densities. Through faster biomass production and ground cover a smaller proportion of the evapotranspired water was lost in soil evaporation and a larger proportion was transpired. However, the net effect was a greater water use in the early phases of growth and consequently a lower water availability later in the season, leading to similar yields regardless of sowing density.  相似文献   

12.
Common bean architecture is in part determined by the determinacy gene fin which can affect yield potential and adaptation to various environments and has many known effects in temperate regions. Tropical adaptation, meanwhile, requires adaptation to rainy and dry seasons where heat and drought stress are major problems. The goal of this research was to determine the effect of the fin gene on plants grown under heat, drought and non-stress conditions in the tropics and to identify quantitative trait loci (QTL) for architectural, phenological and yield traits related to fin in an inter-genepool population derived from a cross between an indeterminate Mesoamerican genotype with erect architecture (A55) and a determinate Andean genotype with heat tolerance (G122). The population was evaluated in four experiments conducted in a tropical location across two rainy seasons and across dry season drought stress and dry season irrigated treatments. A total of 71 SSR loci and 245 AFLP, RAPD, seed protein or phenotypic markers were integrated together into a genetic map with a total distance of 982.8 cM. A total of 36 QTL were identified based on the evaluation of six phenotypic variables differentiating the parents. The A55 parent was high yielding under all conditions; while G122 was confirmed to be resistant to high temperatures, but not to drought. Some QTL for yield were associated with erect growth alleles inherited from the indeterminate parent and were located on linkage group b01 near the fin locus while other QTL for seed weight were found across the genome.  相似文献   

13.
Agaricus bisporus is a popular edible mushroom that is cultivated worldwide. Due to its secondary homothallic nature, cultivated A. bisporus strains have low genetic diversity, and breeding novel strains is challenging. The aim of this study was to investigate the genetic diversity and population structure of globally collected A. bisporus strains using simple sequence repeat (SSR) markers. Agaricus bisporus strains were divided based on genetic distance-based groups and model-based subpopulations. The major allele frequency (MAF), number of genotypes (NG), number of alleles (NA), observed heterozygosity (HO), expected heterozygosity (HE), and polymorphic information content (PIC) were calculated, and genetic distance, population structure, genetic differentiation, and Hardy–Weinberg equilibrium (HWE) were assessed. Strains were divided into two groups by distance-based analysis and into three subpopulations by model-based analysis. Strains in subpopulations POP A and POP B were included in Group I, and strains in subpopulation POP C were included in Group II. Genetic differentiation between strains was 99%. Marker AB-gSSR-1057 in Group II and subpopulation POP C was confirmed to be in HWE. These results will enhance A. bisporus breeding programs and support the protection of genetic resources.  相似文献   

14.
A large-effect QTL associated with grain yield in aerobic environments was identified in three genetic backgrounds, Apo/2*Swarna, Apo/2*IR72, and Vandana/2*IR72, using bulk-segregant analysis (BSA). Apo and Vandana are drought-tolerant aerobic-adapted varieties, while Swarna and IR72 are important lowland rice varieties grown on millions of hectares in Asia but perform poorly in aerobic conditions. Two closely linked rice microsatellite (RM) markers, RM510 and RM19367, located on chromosome 6, were found to be associated with yield under aerobic soil conditions in all three backgrounds. The QTL linked to this marker, qDTY6.1 (DTY, grain yield under drought), was mapped to a 2.2 cM region between RM19367 and RM3805 at a peak LOD score of 32 in the Apo/2*Swarna population. The effect of qDTY6.1 was tested in a total of 20 hydrological environments over a period of five seasons and in five populations in the three genetic backgrounds. In the Apo/2*Swarna population, qDTY6.1 had a large effect on grain yield under favorable aerobic (R 2 ≤ 66%) and irrigated lowland (R 2 < 39%) conditions but not under drought stress; Apo contributed the favorable allele in all the conditions where an effect was observed. In the Apo/IR72 cross, Apo contributed the favorable allele in almost all the aerobic environments in RIL and BC1-derived populations. In the Vandana/IR72 RIL and BC1-derived populations, qDTY6.1 had a strong effect on yield in aerobic drought stress, aerobic non-stress, and irrigated lowland conditions; the Vandana allele was favorable in aerobic environments and the IR72 allele was favorable in irrigated lowland environments. We conclude that qDTY6.1 is a large-effect QTL for rice grain yield under aerobic environments and could potentially be used in molecular breeding of rice for aerobic environments.  相似文献   

15.
Association mapping based on linkage disequilibrium provides a promising tool for dissecting the genetic basis underlying complex traits. To reveal the genetic variations of yield and yield components traits in upland cotton, 403 upland cotton accessions were collected and analyzed by 560 genome-wide simple sequence repeats (SSRs). A diverse panel consisting of 403 upland cotton accessions was grown in six different environments, and the yield and yield component traits were measured, and 560 SSR markers covering the whole genome were mapped. Association studies were performed to uncover the genotypic and phenotypic variations using a mixed linear model. Favorable alleles and typical accessions for yield traits were identified. A total of 201 markers were polymorphic, revealing 394 alleles. The average gene diversity and polymorphism information content were 0.556 and 0.483, respectively. Based on a population structure analysis, 403 accessions were divided into two subgroups. A mixed linear model analysis of the association mapping detected 43 marker loci according to the best linear unbiased prediction and in at least three of the six environments(??lgP?>?1.30, P?<?0.05). Among the 43 associated markers, five were associated with more than two traits simultaneously and nine were coincident with those identified previously. Based on phenotypic effects, favorable alleles and typical accessions that contained the elite allele loci related to yield traits were identified and are widely used in practical breeding. This study detected favorable quantitative trait loci’s alleles and typical accessions for yield traits, these are excellent genetic resources for future high-yield breeding by marker-assisted selection in upland cotton in China.  相似文献   

16.
Improved mapping, multi-environment quantitative trait loci (QTL) analysis and dissection of allelic effects were used to define a QTL associated with grain yield, thousand grain weight and early vigour on chromosome 3BL of bread wheat (Triticum aestivum L.) under abiotic stresses. The QTL had pleiotropic effects and showed QTL x environment interactions across 21 diverse environments in Australia and Mexico. The occurrence and the severity of water deficit combined with high temperatures during the growing season affected the responsiveness of this QTL, resulting in a reversal in the direction of allelic effects. The influence of this QTL can be substantial, with the allele from one parent (RAC875) increasing grain yield by up to 12.5 % (particularly in environments where both heat and drought stress occurred) and the allele from the other parent (Kukri) increasing grain yield by up to 9 % in favourable environments. With the application of additional markers and the genotyping of additional recombinant inbred lines, the genetic map in the QTL region was refined to provide a basis for future positional cloning.  相似文献   

17.
Micronutrient malnutrition, and particularly deficiency in zinc (Zn) and iron (Fe), afflicts over three billion people worldwide, and nearly half of the world’s cereal-growing area is affected by soil Zn deficiency. Wild emmer wheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell.], the progenitor of domesticated durum wheat and bread wheat, offers a valuable source of economically important genetic diversity including grain mineral concentrations. Twenty two wild emmer wheat accessions, representing a wide range of drought resistance capacity, as well as two durum wheat cultivars were examined under two contrasting irrigation regimes (well-watered control and water-limited), for grain yield, total biomass production and grain Zn, Fe and protein concentrations. The wild emmer accessions exhibited high genetic diversity for yield and grain Zn, Fe and protein concentrations under both irrigation regimes, with a considerable potential for improvement of the cultivated wheat. Grain Zn, Fe and protein concentrations were positively correlated with one another. Although irrigation regime significantly affected ranking of genotypes, a few wild emmer accessions were identified for their advantage over durum wheat, having consistently higher grain Zn (e.g., 125 mg kg?1), Fe (85 mg kg?1) and protein (250 g kg?1) concentrations and high yield capacity. Plants grown from seeds originated from both irrigation regimes were also examined for Zn efficiency (Zn deficiency tolerance) on a Zn-deficient calcareous soil. Zinc efficiency, expressed as the ratio of shoot dry matter production under Zn deficiency to Zn fertilization, showed large genetic variation among the genotypes tested. The source of seeds from maternal plants grown under both irrigation regimes had very little effect on Zn efficiency. Several wild emmer accessions revealed combination of high Zn efficiency and drought stress resistance. The results indicate high genetic potential of wild emmer wheat to improve grain Zn, Fe and protein concentrations, Zn deficiency tolerance and drought resistance in cultivated wheat.  相似文献   

18.
Most high-yielding rice cultivars developed for irrigated conditions, including the widely grown lowland variety IR64, are highly susceptible to drought stress. This limits their adoption in rainfed rice environments where there is a risk of water shortage during the growing season. Mapping studies using lowland-by-upland rice populations have provided limited information about the genetic basis of variation in yield under drought. One approach to simultaneously improve and understand rice drought tolerance is to generate backcross populations, select superior lines in managed stress environments, and then evaluate which features of the selected lines differ from the recurrent parent. This approach was been taken with IR64, using a range of tolerant and susceptible cultivars as donor parents. Yields of the selected lines measured across 13 widely contracting water environments were generally greater than IR64, but genotype-by-environment effects were large. Traits expected to vary between IR64 and selected lines are plant height, because many donors were not semi-dwarf types, and maturity, because selection in a terminal stress environment is expected to favour earliness. In these experiments it was found that some lines that performed better under upland drought were indeed taller than IR64, but that shorter lines with good yield under drought could also be identified. In trials where drought stress developed in previously flooded (lowland) fields, height was not associated with performance. There was little change in maturity with selection. Other notable differences between IR64 and the selected backcross lines were in their responses to applied ABA and ethylene in greenhouse experiments at the vegetative stage and in leaf rolling observed under chronic upland stress in the field. These observations are consistent with the hypothesis that adaptive responses to drought can effectively allow for improved performance across a broad range of water environments. The results indicate that the yield of IR64 under drought can be significantly improved by backcrossing with selection under stress. In target environments where drought is infrequent but significant in certain years, improved IR64 with greater drought tolerance would be a valuable option for farmers.  相似文献   

19.
Physiological traits and productivity of the recombinant chromosome substitution lines (RCSLs) of barley, developed through the cross of Hordeum vulgare ssp. vulgare cv. Harrington and the wild ancestor Hordeum vulgare ssp. spontaneum, were measured in plants growing in microplots (with and without irrigation) and in field conditions in two Mediterranean‐type environments, Cauquenes (rainfed) and Santa Rosa (irrigated). The objectives were to assess the degree of phenotypic variability in response to terminal drought stress and to test whether the introgression of the wild ancestor into cv. Harrington can increase the terminal drought tolerance of RCSLs of barley. Days from emergence to anthesis and from anthesis to maturity of the 80 RCSLs were reduced in only 2–4 days under water stress, in microplots. Specific leaf area (SLA) and stomatal conductance (gs) of 80 RCSLs and cv. Harrington decreased greatly under water stress in plants growing in microplots and field conditions (in 2004/05 growing season). No G × E interaction was detected except for SLA in the microplot experiment. The principal component analysis provided a clear distinction between RCSLs. Along the first principal component, it was possible to identify 24 RCSLs which represent the whole range of grain yield (GY), gs and SLA observed in the 80 RCSLs. The selected 24 RCSLs were evaluated in field conditions at Cauquenes and Santa Rosa, during two growing seasons (2007/08 and 2008/09). The gs and carbon isotope discrimination in grains (Δ13C) were significantly (P < 0.001) lower in the rainfed condition (Cauquenes), but the water‐soluble carbohydrates (WSC) in stems at anthesis and maturity was significantly (P < 0.001) higher than in well‐irrigated condition (Santa Rosa). Grain yield was reduced by 63% under drought conditions. Differences between RCSLs in gs, WSC and GY were significant (P < 0.001) in 2007/08. The stress tolerance index (STI) was highly (P < 0.01) correlated with GY in all environments (rainfed and irrigated conditions and the two growing seasons). The relationship between STI and Δ13C under rainfed condition allowed identifying drought tolerant and susceptible RCSLs; the former were high yielding lines under rainfed and irrigated conditions (and higher STI values), but with similar GY to cv. Harrington, but presented higher grain Δ13C values than cv. Harrington. The drought susceptible lines presented lower GY, STI and Δ13C values than cv. Harrington. These results suggest that H. spontaneum has contributed alleles that increase terminal drought tolerance to some of the RCSLs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号