首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein moiety of the Braun's E. coli outer membrane lipoprotein (Lpp-56) is an attractive object of biophysical investigation in several aspects. It is a homotrimeric, parallel coiled coil, a class of coiled coils whose stability and folding have been studied only occasionally. Lpp-56 possesses unique structural properties and exhibits extremely low rates of folding and unfolding. It is natural to ask how the specificity of the structure determines the extraordinary physical chemical properties of this protein. Recently, a seemingly controversial data on the stability and unfolding rate of Lpp-56 have been published (Dragan et al., Biochemistry 2004;43: 14891-14900; Bjelic et al., Biochemistry 2006;45:8931-8939). The unfolding rate constant measured using GdmCl as the denaturing agent, though extremely low, was substantially higher than that obtained on the basis of thermal unfolding. If this large difference arises from the effect of screening of electrostatic interactions induced by GdmCl, electrostatic interactions would appear to be an important factor determining the unusual properties of Lpp-56. We present here a computational analysis of the electrostatic properties of Lpp-56 combining molecular dynamics simulations and continuum pK calculations. The pH-dependence of the unfolding free energy is predicted in good agreement with the experimental data: the change in DeltaG between pH 3 and pH 7 is approximately 60 kJ mol(-1). The results suggest that the difference in the stability of the protein observed using different experimental methods is mainly because of the effect of the reduction of electrostatic interactions when the salt (GdmCl) concentration increases. We also find that the occupancy of the interhelical salt bridges is unusually high. We hypothesize that electrostatic interactions, and the interhelical salt bridges in particular, are an important factor determining the low unfolding rate of Lpp-56.  相似文献   

2.
3.
A DNA sequence consisting of 24 base pairs was inserted into the structural gene (lpp) coding for the major lipoprotein of the Escherichia coli outer membrane which was carried on a high-copy-number plasmid in which expression was regulated through a lac promoter-operator region. This modification resulted in the insertion of eight amino acid residues, Glu-Glu-Phe-Leu-Glu-Glu-Phe-Leu, between the glutamine residue at position 9 and the leucine residue at position 10 of the wild-type lipoprotein sequence. When production of the mutant lipoprotein was induced by a lac inducer, the cells became swollen, showed unusual morphology, and eventually lysed. When the membrane fraction was analyzed after the induction, the mutant lipoprotein was found to have been normally secreted across the cytoplasmic membrane and assembled in the outer membrane. This lipoprotein was modified with glycerol and palmitic acid and even formed the bound form, which was linked covalently to peptidoglycan. The major difference between the membrane-associated mutant lipoprotein and the wild-type lipoprotein was that the mutant lipoprotein became sensitive to trypsin treatment. These results indicate that the substantial alteration in mutant lipoprotein structure near the amino-terminal end does not interfere with modification of the amino-terminal cysteine residue or cleavage of the signal peptide by the prolipoprotein-specific signal peptidase. However, this mutant lipoprotein assembled in the outer membrane appears to have deleterious effects with respect to envelope structure and cellular morphology and viability.  相似文献   

4.
The TolA protein is involved in maintaining the integrity of the outer membrane of Escherichia coli, as mutations in tolA cause the bacteria to become hypersensitive to detergents and certain antibiotics and to leak periplasmic proteins into the medium. This protein also is required for the group A colicins to exert their effects and for many of the filamentous single-stranded bacteriophage to infect the bacterial cell. TolA is a three-domain protein, with the amino-terminal domain anchoring it to the inner membrane. The helical second domain is proposed to span the periplasmic space to allow the carboxyl-terminal third domain to interact with the outer membrane. A plasmid that allowed the synthesis and transport of the carboxyl-terminal third domain into the periplasmic space was constructed. The presence of an excess of this domain in the periplasm of a wild-type cell resulted in an increased sensitivity to deoxycholate, the release of periplasmic alkaline phosphatase and RNase into the medium, and an increased tolerance to colicins E1, E2, E3, and A. There was no effect on the cells' response to colicin D, which depends on TonB instead of TolA for its action. The presence of the free carboxyl-terminal domain of TolA in the periplasm in a tolA null mutation did not restore the wild-type phenotype, suggesting that this domain must be part of the intact TolA molecule to perform its function. Our results are consistent with a model in which the carboxyl-terminal domain of TolA interacts with components in the periplasm or on the inner surface of the outer membrane to function in maintaining the integrity of this membrane.  相似文献   

5.
Wang X  Yang X  Yang C  Wu Z  Xu H  Shen Y 《PloS one》2011,6(10):e26845
NMB0315 is an outer membrane protein of Neisseria meningitidis serogroup B (NMB) and a potential candidate for a broad-spectrum vaccine against meningococcal disease. The crystal structure of NMB0315 was solved by single-wavelength anomalous dispersion (SAD) at a resolution of 2.4 Å and revealed to be a lysostaphin-type peptidase of the M23 metallopeptidase family. The overall structure consists of three well-separated domains and has no similarity to any previously published structure. However, only the topology of the carboxyl-terminal domain is highly conserved among members of this family, and this domain is a zinc-dependent catalytic unit. The amino-terminal domain of the structure blocks the substrate binding pocket in the carboxyl-terminal domain, indicating that the wild-type full-length protein is in an inactive conformational state. Our studies improve the understanding of the catalytic mechanism of M23 metallopeptidases.  相似文献   

6.
J M Gennity  H Kim    M Inouye 《Journal of bacteriology》1992,174(7):2095-2101
The lipid-modified nine-residue amino-terminal sequence of the mature form of the major outer membrane lipoprotein of Escherichia coli contains information that is responsible for sorting to either the inner or outer membrane. Fusion of this sorting sequence to beta-lactamase is sufficient for localization of the resultant lipo-beta-lactamase to the outer membrane (J. Ghrayeb and M. Inouye, J. Biol. Chem. 259:463-467, 1984). Substitution of the serine adjacent to the amino-terminal lipid-modified cysteine residue of the sorting sequence with the negatively charged residue aspartate causes inner membrane localization (K. Yamaguchi, F. Yu, and M. Inouye, Cell 53:423-432, 1988). Fusion of the aspartate-containing nine-residue inner membrane localization signal to the normally outer membrane lipoprotein bacteriocin release protein does cause partial localization to the inner membrane. However, a single replacement of the glutamine adjacent to the amino-terminal lipid-modified cysteine residue of bacteriocin release protein with aspartate causes no inner membrane localization. Therefore, an aspartate residue itself lacks the information necessary for inner membrane sorting when removed from the structural context provided by the additional eight residues of the sorting sequence. Although the aspartate-containing inner membrane sorting sequence causes an almost quantitative localization to the inner membrane when fused to the otherwise soluble protein beta-lactamase, this sequence cannot prevent significant outer membrane localization when fused to proteins (bacteriocin release protein and OmpA) normally found in the outer membrane. Therefore, structural determinants in addition to the amino-terminal sorting sequence influence the membrane localization of lipoproteins.  相似文献   

7.
K M Izumi  K M Kaye    E D Kieff 《Journal of virology》1994,68(7):4369-4376
Previous recombinant Epstein-Barr virus molecular genetic experiments with specifically mutated LMP1 genes indicate that LMP1 is essential for primary B-lymphocyte growth transformation and that the amino-terminal cytoplasmic and first transmembrane domains are together an important mediator of transformation. EBV recombinants with specific deletions in the amino-terminal cytoplasmic domain have now been constructed and tested for the ability to growth transform primary B lymphocytes into lymphoblastoid cell lines. Surprisingly, deletion of DNA encoding EHDLER or GPPLSSS from the full LMP1 amino-terminal cytoplasmic domain (MEHDLERGPPGPRRPPRGPPLSSS) had no discernible effect on primary B-lymphocyte transformation. These two motifs distinguish the LMP1 amino-terminal cytoplasmic domain from other arginine-rich membrane proximal sequences that anchor hydrophobic transmembrane domains. Two deletions which included the ERGPPGPRRPPR motif adversely affected but did not prevent transformation. This arginine- and proline-rich sequence is probably important in anchoring the first transmembrane domain in the plasma membrane, since these mutated LMP1s had altered stability and cell membrane localization. The finding that overlapping deletions of the entire amino-terminal cytoplasmic domain do not ablate transformation is most consistent with a model postulating that the transmembrane and carboxyl-terminal cytoplasmic domains are the likely biochemical effectors of transformation.  相似文献   

8.
Human asialoglycoprotein receptor H1 is a single-spanning membrane protein with an amino-terminal domain of 40 residues exposed to the cytoplasm and the carboxyl-terminal domain translocated to the exoplasmic side of the membrane. It has been shown earlier that the transmembrane segment functions as an internal uncleaved signal sequence for insertion into the endoplasmic reticulum. In a deletion protein lacking almost the entire cytoplasmic domain, the signal sequence is cleaved at the carboxyl-terminal end of the transmembrane segment. All available criteria suggest that the protein is processed by signal peptidase. The cytoplasmic domain of the receptor does not directly inhibit signal cleavage since it does not detectably hinder cleavage of the normally amino-terminal signal sequence of influenza hemagglutinin in fusion proteins. We suggest that by its size or structure it affects the position of the receptor in the membrane and thus the accessibility of the potential cleavage site to signal peptidase.  相似文献   

9.
To analyse the outer membrane folding of the molecular usher FaeD, tagged derivatives were prepared and their expression, tag-localisation and functioning in K88 fimbriae biosynthesis was studied. A semi-random insertion mutagenesis approach with factor Xa cleavage sites yielded six tagged FaeD derivatives. A site-directed mutagenesis approach in which c-myc epitopes were inserted yielded twenty-one different derivatives. Four tagged FaeD constructs were not expressed in the outer membrane as full-sized proteins to levels that could be detected by using immunoblotting analyses. Two of these had an insertion in the amino-terminal part of FaeD, whereas the other two had a tag inserted in the carboxyl-terminal part. The latter ones yielded stable carboxyl-terminally shortened truncates of about 70 kDa, as did other mutations in this region. Six tagged derivatives were expressed but the location of the tag with respect to the outer membrane could not be determined, possibly due to shielding. Functional analysis showed that insertion of a tag in two regions of FaeD, a central region of approximately 200 amino acid residues (a.a. 200-400) and the carboxyl-terminal region (a.a. 600-end), resulted in a defective K88 fimbriae biosynthesis. In-frame deletions in the amino-terminal region of FaeD abolished fimbriae production. The integrity of these regions is obviously essential for fimbriae biosynthesis. Based on the results and with the aid of a computer analysis programme for the prediction of outer membrane beta-strands, a folding model with 22 membrane spanning beta-strands and two periplasmioc domains has been developed.  相似文献   

10.
The yeast nuclear gene MRS2 encodes a protein of 54 kDa, the presence of which has been shown to be essential for the splicing of group II intron RNA in mitochondria and, independently, for the maintenance of a functional respiratory system. Here we show that the MRS2 gene product (Mrs2p) is an integral protein of the inner mitochondrial membrane. It appears to be inserted into this membrane by virtue of two neighboring membrane spanning domains in its carboxyl-terminal half. A large amino-terminal and a shorter carboxyl-terminal part are likely to be exposed to the matrix space. Structural features and a short sequence motif indicate that Mrs2p may be related to the bacterial CorA Mg2+ transporter. In fact, overexpression of the CorA gene in yeast partially suppresses the pet- phenotype of an mrs2 disrupted yeast strain. Disruption of the MRS2 gene leads to a significant decrease in total magnesium content of mitochondria which is compensated for by the overexpression of the CorA gene. Mutants lacking or overproducing Mrs2p exhibit phenotypes consistent with the involvement of Mrs2p in mitochondrial Mg2+ homeostasis.  相似文献   

11.
The primary structure of sarcotoxin I, a potent bactericidal protein induced in the hemolymph of larvae of Sarcophaga peregrina (flesh fly), was investigated. Sarcotoxin I was a mixture of three proteins (sarcotoxins IA, IB, and IC) with almost identical primary structures. These proteins were found to consist of 39 amino acid residues and to differ in only 2-3 amino acid residues. The amino-terminal half of the molecules was rich in charged amino acids and was hydrophilic, whereas the carboxyl-terminal half was hydrophobic. It is suggested that the carboxyl-terminal half of sarcotoxin I penetrates into the bacterial membrane and that its amino-terminal half rich in basic amino acid residues interacts with acidic phospholipids in the bacterial membrane, resulting in perturbation of the membrane and loss of viability of the bacteria.  相似文献   

12.
Recent work has demonstrated that p56lck, a member of the Src family of protein tyrosine kinases (PTKs), is modified by palmitoylation of a cysteine residue(s) within the first 10 amino acids of the protein (in addition to amino-terminal myristoylation that is a common modification of the Src family of PTKs). This is now extended to three other members of this family by showing incorporation of [3H]palmitate into p59fyn, p55fgr, and p56hck, but not into p60src. The [3H]palmitate was released by treatment with neutral hydroxylamine, indicating a thioester linkage to the protein. Individual replacement of the two cysteine residues within the first 10 amino acids of p59fyn and p56lck with serine indicated that Cys3 was the major determinant of palmitoylation, as well as association of the PTK with glycosyl-phosphatidylinositol- anchored proteins. Introduction of Cys3 into p60src led to its palmitoylation. p59fyn but not p60src partitioned into Triton-insoluble complexes that contain caveolae, microinvaginations of the plasma membrane. Mapping of the requirement for partitioning into caveolae demonstrated that the amino-terminal sequence Met-Gly-Cys is both necessary and sufficient within the context of a Src family PTK to confer localization into caveolae. Palmitoylation of this motif in p59fyn also modestly increased its overall avidity for membranes. These results highlight the role of the amino-terminal motif Met-Gly-Cys in determining the structure and properties of members of the Src family of PTKs.  相似文献   

13.
We have examined transfected cells by immunofluorescence microscopy to determine the signals and structural features required for the targeting of integral membrane proteins to the inner nuclear membrane. Lamin B receptor (LBR) is a resident protein of the nuclear envelope inner membrane that has a nucleoplasmic, amino-terminal domain and a carboxyl-terminal domain with eight putative transmembrane segments. The amino-terminal domain of LBR can target both a cytosolic protein to the nucleus and a type II integral protein to the inner nuclear membrane. Neither a nuclear localization signal (NLS) of a soluble protein, nor full-length histone H1, can target an integral protein to the inner nuclear membrane although they can target cytosolic proteins to the nucleus. The addition of an NLS to a protein normally located in the inner nuclear membrane, however, does not inhibit its targeting. When the amino-terminal domain of LBR is increased in size from approximately 22.5 to approximately 70 kD, the chimeric protein cannot reach the inner nuclear membrane. The carboxyl-terminal domain of LBR, separated from the amino-terminal domain, also concentrates in the inner nuclear membrane, demonstrating two nonoverlapping targeting signals in this protein. Signals and structural features required for the inner nuclear membrane targeting of proteins are distinct from those involved in targeting soluble polypeptides to the nucleoplasm. The structure of the nucleocytoplasmic domain of an inner nuclear membrane protein also influences targeting, possibly because of size constraints dictated by the lateral channels of the nuclear pore complexes.  相似文献   

14.
Chen B  Lowry DF  Mayer MU  Squier TC 《Biochemistry》2008,47(35):9220-9226
The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)resorufin (ReAsH), which upon binding to an engineered tetracysteine motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the (1)H- (15)N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH. Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe ( K d = 0.36 +/- 0.04 microM), which results in a reduction in the rate of ReAsH binding from 4900 M (-1) s (-1) to 370 M (-1) s (-1). In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe require calcium occupancy of amino-terminal sites (K d = 18 +/- 3 microM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces secondary structural changes within the interdomain linker that release helix A, thereby facilitating the formation of calcium binding sites in the amino-terminal lobe and linked tertiary structural rearrangements to form a high-affinity binding cleft that can associate with target proteins.  相似文献   

15.
Dragan AI  Potekhin SA  Sivolob A  Lu M  Privalov PL 《Biochemistry》2004,43(47):14891-14900
Temperature-induced reversible unfolding and refolding of the three-stranded alpha-helical coiled coil, Lpp-56, were studied by kinetic and thermodynamic methods, using CD spectroscopy, dynamic light scattering, and scanning calorimetry. It was found that both unfolding and refolding reactions of this protein in neutral solution in the presence of 100 mM NaCl are characterized by unusually slow kinetics, which permits detailed investigation of the mechanism of these reactions. Kinetic analyses show that the unfolding of this coiled coil represents a single-stage first-order reaction, while the refolding represents a single-stage third-order reaction. The activation enthalpy and entropy for unfolding do not depend noticeably on temperature and are both significantly greater than those for the folding reaction, which show a significant dependence on temperature. The activation heat capacity change for the unfolding reaction is close to zero, while it is quite significant for the folding reaction. The correlation between the activation and structural parameters obtained for the Lpp-56 coiled coil suggests that interhelical van der Waals interactions are disrupted in the transition state, which is nevertheless still compact, and water has not yet penetrated into the interface; the transition from the transient state to the unfolded state results in hydration of exposed apolar groups of the interface and the disruption of helices. The low propensity for the Lpp-56 strands to fold and associate is caused by the high number of charged groups at neutral pH. On one hand, these charges give rise to considerable repulsive forces destabilizing the helical conformation of the strands. On the other hand, they align the folded helices in parallel and in register so that the apolar sides face each other, and the oppositely charged groups may form salt links, which are important for the formation of the trimeric coiled coil. A decrease in pH, which eliminates the salt links, dramatically decreases the stability of Lpp-56; its structure becomes less rigid and unfolds much faster.  相似文献   

16.
K Yamaguchi  F Yu  M Inouye 《Cell》1988,53(3):423-432
When beta-lactamase was fused with the signal peptide plus the amino-terminal 9 amino acid residues of the major outer membrane lipoprotein, the resultant lipo-beta-lactamase (LL-1) was shown to be localized to the outer membrane. However, when the 9 residue sequence was replaced with the amino-terminal 12 residue sequence of lipoprotein-28, an inner membrane protein, the resultant lipo-beta-lactamase (LL-2) was found exclusively in the inner membrane. The localization of LL-2 was shifted to the outer membrane simply by substituting the second amino acid residue (Asp) of LL-2 with Ser. Conversely, the alteration of the second residue (Ser) of LL-1 to Asp resulted in the localization of LL-1 to the inner membrane. These results suggest that the second amino acid residue of the lipoproteins plays a crucial role in determining their final locations in the E. coli envelope.  相似文献   

17.
Hirudin, a thrombin-specific inhibitor, comprises a compact amino-terminal core domain (residues 1-52) and a disordered acidic carboxyl-terminal tail (residues 53-65). An array of core fragments were prepared from intact recombinant hirudin by deletion of various lengths of its carboxyl-terminal tail on selective enzymatic cleavage. Hir1-56 and Hir1-53 were produced by pepsin digestion at Phe56-Glu57 and Asp53-Gly54. Hir1-52 was generated by Asp-N cleavage at Asn52-Asp53. Hir1-49 was prepared by cleavage of Gln49-Ser50 by chymotrypsin, elastase, and thermolysin. In addition, Hir1-62 (containing part of the carboxyl-terminal tail) was derived from Hir1-65 by selective removal of the three carboxyl-terminal amino acids using carboxypeptidase A. Hirudin amino-terminal core fragments were stable at extreme pH (1.47 and 12.6), high temperature (95 degrees C), and resistant to attack by various proteinases. For instance, following 24-h incubation with an equal weight of pepsin, the covalent structure of Hir1-52 remained intact and its anticoagulant activity unaffected. Unlike intact hirudin (Hir1-65) the inhibitory potency of which is a consequence of concerted binding of its amino-terminal and carboxyl-terminal domains to the active site and the fibrinogen recognition site of thrombin, the core fragments block only the active site of thrombin with binding constants of 19 nM (Hir1-56), 35 nM (Hir1-52), and 72 nM (Hir1-49). As an anticoagulant Hir1-56 is about 2-, 4-, and 30-fold more potent (on a molar basis) than Hir1-52, Hir1-49, and Hir1-43, respectively. Hir1-56 was also about 15-fold more effective than the most potent carboxyl-terminal fragment of hirudin, sulfated-Hir54-65, although they bind to independent sites on thrombin. The potential advantages of hirudin core fragments as antithrombotic agents are discussed in this report.  相似文献   

18.
Subunit II (CyoA) of cytochrome bo3 oxidase, which spans the inner membrane twice in bacteria, has several unusual features in membrane biogenesis. It is synthesized with an amino-terminal cleavable signal peptide. In addition, distinct pathways are used to insert the two ends of the protein. The amino-terminal domain is inserted by the YidC pathway whereas the large carboxyl-terminal domain is translocated by the SecYEG pathway. Insertion of the protein is also proton motive force (pmf)-independent. Here we examined the topogenic sequence requirements and mechanism of insertion of CyoA in bacteria. We find that both the signal peptide and the first membrane-spanning region are required for insertion of the amino-terminal periplasmic loop. The pmf-independence of insertion of the first periplasmic loop is due to the loop's neutral net charge. We observe also that the introduction of negatively charged residues into the periplasmic loop makes insertion pmf dependent, whereas the addition of positively charged residues prevents insertion unless the pmf is abolished. Insertion of the carboxyl-terminal domain in the full-length CyoA occurs by a sequential mechanism even when the CyoA amino and carboxyl-terminal domains are swapped with other domains. However, when a long spacer peptide is added to increase the distance between the amino-terminal and carboxyl-terminal domains, insertion no longer occurs by a sequential mechanism.  相似文献   

19.
Wang S  York J  Shu W  Stoller MO  Nunberg JH  Lu M 《Biochemistry》2002,41(23):7283-7292
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein complex (gp120-gp41) promotes viral entry by mediating the fusion of viral and cellular membranes. Formation of a stable trimer-of-hairpins structure in the gp41 ectodomain brings the two membranes into proximity, leading to membrane fusion. The core of this hairpin structure is a six-helix bundle in which three carboxyl-terminal outer helices pack against an inner trimeric coiled coil. Here we investigate the role of these conserved interhelical interactions on the structure and function of both the envelope glycoprotein and the gp41 core. We have replaced each of the eight amino acids at the buried face of the carboxyl-terminal helix with a representative amino acid, alanine. Structural and physicochemical characterization of the alanine mutants shows that hydrophobic interactions are a dominant factor in the stabilization of the six-helix bundle. Alanine substitutions at the Trp628, Trp631, Ile635, and Ile642 residues also affected envelope processing and/or gp120-gp41 association and abrogated the ability of the envelope glycoprotein to mediate cell-cell fusion. These results suggest that the amino-terminal region of the gp41 outer-layer alpha-helix plays a key role in the sequence of events associated with HIV-1 entry and have implications for the development of antibodies and small-molecule inhibitors of this conserved element.  相似文献   

20.
The prolipoprotein, a secretory precursor of the outer membrane lipoprotein of Escherichia coli, is known to be accumulated in the cell envelope when cells are grown in the presence of a cyclic antibiotic, globomycin. The prolipoprotein was localized in the cytoplasmic membrane when it was separated from the outer membrane by sucrose-density gradient centrifugation. However, when the envelope fraction was treated with sodium sarcosinate, the prolipoprotein was found almost exclusively in the sarcosinate-insoluble outer membrane fraction. The prolipoprotein separated in the cytoplasmic membrane by sucrose-density gradient centrifugation was soluble in sarcosinate and could not form a complex with the outer membrane once solubilized in sarcosinate. Labeling of the two lysine residues at positions 2 and 5 of the prolipoprotein with [3H]dinitrophenylfluorobenzene was enhanced 26-fold when the cells were disrupted by sonication. On the other hand, a tryptic fragment of the ompA protein, which is known to exist in the periplasmic space, increased its susceptibility to [3H]dinitrophenylfluorobenzene only 5.3-times upon disruption of the cell structure. These results indicate that the prolipoprotein accumulated in the presence of globomycin is translocated across the cytoplasmic membrane and interacts with the outer membrane. At the same time, it is attached to the cytoplasmic membrane with its amino-terminal signal peptide in such a way that the amino-terminal portion of the signal peptide containing two lysine residues is left inside the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号