首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcineurin is a serine/threonine protein phosphatase that plays a critical role in many physiologic processes, such as T-cell activation, apoptosis, skeletal myocyte differentiation, and cardiac hypertrophy. We determined that active MEKK3 was capable of activating calcineurin/nuclear factor of activated T-cells (NFAT) signaling in cardiac myocytes and reprogramming cardiac gene expression. In contrast, small interference RNA directed against MEKK3 and a dominant negative form of MEKK3 caused the reduction of NFAT activation in response to angiotensin II in cardiac myocytes. Genetic studies showed that MEKK3-deficient mouse embryo fibroblasts failed to activate calcineurin/NFAT in response to angiotensin II, a potent NFAT activator. Conversely, restoring MEKK3 to the MEKK3-deficient cells restored angiotensin II-mediated calcineurin/NFAT activation. We determined that angiotensin II induced MEKK3 phosphorylation. Thus, MEKK3 functions downstream of the AT1 receptor and is essential for calcineurin/NFAT activation. Finally, we determined that MEKK3-mediated activation of calcineurin/NFAT signaling was associated with the phosphorylation of modulatory calcineurin-interacting protein 1 at Ser(108) and Ser(112). Taken together, our studies reveal a previously unrecognized novel essential regulatory role of MEKK3 signaling in calcineurin/NFAT activation.  相似文献   

2.
MEKK2 and MEKK3 are two closely related mitogen-activated protein kinase (MAPK) kinase kinases. The kinase domains of MEKK2 and MEKK3 are nearly identical, although their N-terminal regulatory domains are significantly divergent. By yeast two-hybrid library screening, we have identified MEK5, the MAPK kinase in the big mitogen-activated protein kinase 1 (BMK1)/ERK5 pathway, as a binding partner for MEKK2. MEKK2 expression stimulates BMK1/ERK5 activity, the downstream substrate for MEK5. Compared with MEKK3, MEKK2 activated BMK1/ERK5 to a greater extent, which might correlate with a higher affinity MEKK2-MEK5 interaction. A dominant negative form of MEK5 blocked the activation of BMK1/ERK5 by MEKK2, whereas activation of c-Jun N-terminal kinase (JNK) was unaffected, showing that MEK5 is a specific downstream effector of MEKK2 in the BMK1/ERK5 pathway. Activation of BMK1/ERK5 by epidermal growth factor and H2O2 in Cos7 and HEK293 cells was completely blocked by a kinase-inactive MEKK3 (MEKK3kin(-)), whereas MEKK2kin(-) had no effect. However, in D10 T cells, expression of MEKK2kin(-) but not MEKK3kin(-) inhibited BMK1/ERK5 activity. Two-hybrid screening also identified Lck-associated adapter/Rlk- and Itk-binding protein (Lad/RIBP), a T cell adapter protein, as a binding partner for MEKK2. MEKK2 and Lad/RIBP colocalize at the T cell contact site with antigen-loaded presenting cells, demonstrating cotranslocation of MEKK2 and Lad/RIBP during T cell activation. MEKK3 neither binds Lad/RIBP nor is recruited to the T cell contact with antigen presenting cell. MEKK2 and MEKK3 are differentially associated with signaling from specific upstream receptor systems, whereas both activate the MEK5-BMK1/ERK5 pathway.  相似文献   

3.
Here we describe a small family of proteins, termed MCIP1 and MCIP2 (for myocyte-enriched calcineurin interacting protein), that are expressed most abundantly in striated muscles and that form a physical complex with calcineurin A. MCIP1 is encoded by DSCR1, a gene located in the Down syndrome critical region. Expression of the MCIP family of proteins is up-regulated during muscle differentiation, and their forced overexpression inhibits calcineurin signaling to a muscle-specific target gene in a myocyte cell background. Binding of MCIP1 to calcineurin A requires sequence motifs that resemble calcineurin interacting domains found in NFAT proteins. The inhibitory action of MCIP1 involves a direct association with the catalytic domain of calcineurin, rather than interference with the function of downstream components of the calcineurin signaling pathway. The interaction between MCIP proteins and calcineurin may modulate calcineurin-dependent pathways that control hypertrophic growth and selective programs of gene expression in striated muscles.  相似文献   

4.
Big mitogen-activated protein (MAP) kinase (BMK1), also known as ERK5, is a member of the MAP kinase family whose cellular activity is elevated in response to growth factors, oxidative stress, and hyperosmolar conditions. Previous studies have identified MEK5 as a cellular kinase directly regulating BMK1 activity; however, signaling molecules that directly regulate MEK5 activity have not yet been defined. Through utilization of a yeast two-hybrid screen, we have identified MEKK3 as a molecule that physically interacts with MEK5. This interaction appears to take place in mammalian cells as evidenced by the fact that cellular MEK5 and MEKK3 co-immunoprecipitate. In addition, we show that a dominant active form of MEKK3 stimulates BMK1 activity through MEK5. Moreover, we demonstrate that MEKK3 activity is required for growth factor mediated cellular activation of endogenous BMK1. Taken together, these results identify MEKK3 as a kinase that regulates the activity of MEK5 and BMK1 during growth factor-induced cellular stimulation.  相似文献   

5.
Calcineurin, a calcium-regulated protein phosphatase, activates gene expression specific to slow muscle fibers by dephosphorylating a family of the nuclear factor of activated T cells (NFAT), which cooperates with myocyte enhancer factor-2 (MEF2) and AP-1. However, it remains unknown how acute exercise influences this signaling pathway and leads to the development of slow muscle fibers. In the present study, we investigated the effect of moderate acute exercise on mRNA expression of genes in the calcineurin signaling pathway in human skeletal muscle. Five healthy volunteers underwent 1 h bicycle ergometer at 50%VO2max, and vastus lateralis muscle biopsies were collected before and after exercise. Four hours after exercise, alterations in mRNA expression of NFAT 1-3 were observed with a wide variety among subjects, while c-fos mRNA was significantly induced in all subjects. By contrast, the expression of calcineurin, MEF2, and myocyte-enriched calcineurin-interacting protein 1 (MCIP1) remained unchanged. These results suggest that even moderate acute exercise may change mRNA expression of genes in the calcineurin-signaling pathway.  相似文献   

6.
7.
8.
9.
10.
Calcineurn/nuclear factor of the activated T cell (CaN/NFAT) signaling pathway plays crucial roles in the development of cardiac hypertrophy, Down's syndrome, and autoimmune diseases in response to pathological stimuli. The aim of the present study is to get a system-level understanding on the regulatory mechanism of CaN/NFAT signaling pathway in consideration of the controversial roles of myocyte-enriched calcineurin interacting protein1 (MCIP1) for varying stress stimuli. To this end, we have developed an experimentally validated mathematical model and carried out computer simulations as well as cell-based experiments. Quantitative overexpression and knock-down experiments in C2C12 myoblasts have revealed that MCIP1 functions only as a calcineurin inhibitor. We have also observed a biphasic response of the NFAT activity with increasing stimuli of isoproterenol. Through extensive in silico simulations, we have discovered that the NFAT activity is primarily modulated by ERK5 and MCIP1 under mild isoproterenol stimuli whereas it is mainly modulated by atrogin1 (muscle atrophy F-box protein) under strong isoproterenol stimuli. This study shows that a system-level analysis may help understanding CaN/NFAT signaling-associated disease.  相似文献   

11.
12.
13.
14.
MEKK1 is a MAPK kinase kinase that is activated in response to stimuli that alter the cytoskeleton and cell shape. MEKK1 phosphorylates and activates MKK1 and MKK4, leading to ERK1/2 and JNK activation. MEKK1 has a plant homeobox domain (PHD) that has been shown to have E3 ligase activity. (Lu, Z., Xu, S., Joazeiro, C., Cobb, M. H., and Hunter, T. (2002) Mol. Cell 9, 945-956). MEKK1 kinase activity is required for ubiquitylation of MEKK1. MEKK1 ubiquitylation is inhibited by mutation of cysteine 441 to alanine (C441A) within the PHD. The functional consequence of MEKK1 ubiquitylation is the inhibition of MEKK1 catalyzed phosphorylation of MKK1 and MKK4 resulting in inhibition of ERK1/2 and JNK activation. The C441A mutation within the PHD of MEKK1 prevents ubiquitylation and preserves the ability of MEKK1 to catalyze MKK1 and MKK4 phosphorylation. MEKK1 ubiquitylation represents a mechanism for inhibiting the ability of a protein kinase to phosphorylate substrates and regulate downstream signaling pathways.  相似文献   

15.
The immunosuppressive effects of cyclosporin A (CsA) and FK506 are mediated through binding to immunophilins. Here we show that FK506–FKBP complex suppresses the activation of JNK and p38 pathways at a level upstream of mitogen-activated protein kinase (MAPK) kinase kinase (MAPKK-K) besides the calcineurin–NFAT pathway. A238L, a viral gene product that binds to immunophilin, also blocks activation of both pathways. In contrast, direct inhibitors of calcineurin, Cabin 1 and FR901725, suppress the activation of NFAT but not the JNK or p38 pathway. We further demonstrate that co-expression of a constitutively active NFAT and a constitutively active MEKK1 renders the interleukin-2 promoter in Jurkat T lymphocytes resistant to CsA and FK506, whereas Jurkat cells expressing a constitutively active NFAT alone are still sensitive to CsA or FK506. Therefore, CsA and FK506 exert their immunosuppressive effects through targeting both the calcineurin-dependent NFAT pathway and calcineurin-independent activation pathway for JNK and p38.  相似文献   

16.
17.
18.
Axin negatively regulates the Wnt pathway during axis formation and plays a central role in cell growth control and tumorigenesis. We found that Axin also serves as a scaffold protein for mitogen-activated protein kinase activation and further determined the structural requirement for this activation. Overexpression of Axin in 293T cells leads to differential activation of mitogen-activated protein kinases, with robust induction for c-Jun NH(2)-terminal kinase (JNK)/stress-activated protein kinase, moderate induction for p38, and negligible induction for extracellular signal-regulated kinase. Axin forms a complex with MEKK1 through a novel domain that we term MEKK1-interacting domain. MKK4 and MKK7, which act downstream of MEKK1, are also involved in Axin-mediated JNK activation. Domains essential in Wnt signaling, i. e. binding sites for adenomatous polyposis coli, glycogen synthase kinase-3beta, and beta-catenin, are not required for JNK activation, suggesting distinct domain utilization between the Wnt pathway and JNK signal transduction. Dimerization/oligomerization of Axin through its C terminus is required for JNK activation, although MEKK1 is capable of binding C terminus-deleted monomeric Axin. Furthermore, Axin without the MEKK1-interacting domain has a dominant-negative effect on JNK activation by wild-type Axin. Our results suggest that Axin, in addition to its function in the Wnt pathway, may play a dual role in cells through its activation of JNK/stress-activated protein kinase signaling cascade.  相似文献   

19.
20.
MEKK3 is a conserved Ser/Thr protein kinase belonging to the MAPK kinase kinase (MAP3K) family. MEKK3 is constitutively expressed in T cells, but its function in T cell immunity has not been fully elucidated. Using Mekk3 T cell conditional knockout (T-cKO) mice, we show that MEKK3 is required for T cell immunity in vivo. Mekk3 T-cKO mice had reduced T cell response to bacterial infection and were defective in clearing bacterial infections. The Ag-induced cytokine production, especially IFN-γ production, was impaired in Mekk3-deficient CD4 T cells. The TCR-induced ERK1/2, JNK, and p38 MAPKs activation was also defective in Mekk3-deficient CD4 T cells. In vitro, MEKK3 is not required for Th1 and Th2 cell differentiation. Notably, under a nonpolarizing condition (Th0), Mekk3 deficiency led to a significant reduction of IFN-γ production in CD4 T cells. Furthermore, the IL-12/IL-18-driven IFN-γ production and MAPK activation in Mekk3-deficient T cells was not affected suggesting that MEKK3 may selectively mediate the TCR-induced MAPK signals for IFN-γ production. Finally, we found that MEKK3 activation by TCR stimulation requires Rac1/2. Taken together, our study reveals a specific role of MEKK3 in mediating the TCR signals for IFN-γ production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号