共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) VO3(-) combines with high affinity to the Ca2+-ATPase and fully inhibits Ca2+-ATPase and Ca2+-phosphatase activities. Inhibition is associated with a parallel decrease in the steady-state of the Ca2+-dependent phosphoenzyme. (2) VO3(-) blocks hydrolysis of ATP at the catalytic site. The sites for VO3(-) also exhibit negative interactions in affinity with the regulatory sites for ATP of the Ca2+-ATPase. (3) The sites for VO39-) show positive interaactions in affinity with sites for Mg2+ and K+. This accounts for the dependence on Mg2+ and K+ of the inhibition by VO3(-). Although, with less effectiveness, Na2+ and K+ substitutes for K+ whereas Li+ does not. The apparent affinites for Mg24 and K+ for inhibiton by VO3(-) seem to be less than those for activation of the Ca2+-ATPase. (4) Inhibition by VO3(-) is independent of Ca2+ at concentrations up to 50 microM. Higher concentrations of Ca2+ lead to a progressive release of the inhibitiory effect of VO3(-). 相似文献
2.
Inhibition of red cell Ca2+-ATPase by vanadate 总被引:3,自引:0,他引:3
1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate. 3. Among the ligands tests, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K 1/2 for vanadate was 1.5 microM and inhibition was nearly complete at saturating vanadate concentrations. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate. 相似文献
3.
The (Ca2+ + Mg2+-ATPase from red cell membranes, purified by means of a calmodulin-containing affinity column according to the method of Gietzen et al. (Gietzen, K., Tej?ka, M. and Wolf, H.U. (1980) Biochem. J. 189, 81–88) with either phosphatidylcholine or phosphatidylserine as phospholipid is characterized. The phosphatidylcholine preparation can be activated by calmodulin, while the phosphatidylserine preparation is fully activated without calmodulin. The enzyme shows a biphasic ATP dependence with two Km values of 3.5 and 120 μM. The enzyme is phosphorylated by ATP in the presence of Ca2+ only. 相似文献
4.
The reaction of Mg2+ with the Ca2+-ATPase from human red cell membranes and its modification by Ca2+
Media prepared with CDTA and low concentrations of Ca2+, as judged by the lack of Na+-dependent phosphorylation and ATPase activity of (Na+ +K+)-ATPase preparations are free of contaminant Mg2+. In these media, the Ca2+-ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca2+-ATPase activity is present. In the absence of Mg2+ the rate of phosphorylation in the presence of 1 microM Ca2+ is very low but it approaches the rate measured in Mg2+-containing media if the concentration of Ca2+ is increased to 5 mM. The KCa for phosphorylation is 2 microM in the presence and 60 microM in the absence of Mg2+. Results are consistent with the idea that for catalysis of phosphorylation the Ca2+-ATPase needs Ca2+ at the transport site and Mg2+ at an activating site and that Ca2+ replaces Mg2+ at this site. Under conditions in which it increases the rate of phosphorylation, Ca2+ is without effect on the Ca2+-ATPase activity in the absence of Mg2+ suggesting that to stimulate ATP hydrolysis Mg2+ accelerates a reaction other than phosphorylation. Activation of the E1P----E2P reaction by Mg2+ is prevented by Ca2+ after but not before the synthesis of E1P from E1 and ATP, suggesting that Mg2+ stabilizes E1 in a state from which Mg2+ cannot be removed by Ca2+ and that Ca2+ stabilizes E1P in a state insensitive to Mg2+. The response of the Ca2+-ATPase activity to Mg2+ concentration is biphasic, activation with a KMg = 88 microM is followed by inhibition with a Ki = 9.2 mM. Ca2+ at concentration up to 1 mM acts as a dead-end inhibitor of the activation by Mg2+, and Mg2+ at concentrations up to 0.5 mM acts as a dead-end inhibitor of the effects of Ca2+ at the transport site of the Ca2+-ATPase. 相似文献
5.
The (Ca2+ + Mg2+)-ATPase from red cell membranes, purified by means of a calmodulin-containing affinity column according to the method of Gietzen et al. (Gietzen, K., Tejcka, M. and Wolf, H.U. (1980) Biochem. J. 189, 81-88) with either phosphatidylcholine or phosphatidylserine as phospholipid is characterized. The phosphatidylcholine preparation can be activated by calmodulin, while the phosphatidylserine preparation is fully activated without calmodulin. The enzyme shows a biphasic ATP dependence with two Km values of 3.5 and 120 microM. The enzyme is phosphorylated by ATP in the presence of Ca2+ only. 相似文献
6.
Ca2+-ATPase activity in human erythrocyte ghosts previously washed to remove endogenous thyroid hormone is stimulated by physiologic concentrations of thyroxine (T4) and triiodothyronine (T3). Two- to three-fold increases (P <0.005) in Ca2+-ATPase activity occurred after 60–120 minutes' exposure of membranes to iodothyronines at concentrations of T4 and T3 of 10?8 M to 10?12 M. T4 was more active than T3 and its activity did not depend upon prior conversion to T3. The Ca2+-ATPase effect represents an extranuclear action of thyroid hormone in a human cell model. 相似文献
7.
Comparison of the effects of calmodulin on the Ca2+-ATPase activity and on the steady-state level of the phosphoenzyme, indicates that activation of the Ca2+-ATPase is mainly due to an increase in the turnover of the phosphoenzyme and does not require occupation of the regulatory site of the Ca2+-ATPase by ATP. 相似文献
8.
Madan G. Luthra Richard P. Watts Karen L. Scherer 《Biochimica et Biophysica Acta (BBA)/General Subjects》1980,633(2):299-304
The effect of purified calmodulin on the calcium-dependent phosphorylation of human erythrocyte membranes was studied. Under the conditions employed, only one major peak of phosphorylation was observed when solubilized membrane proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of this phosphorylated protein band was estimated to be 130 000 and in the presence of purified red blood cell calmodulin, the rate of phosphorylation of this band was increased. These data suggest that calmodulin activation of (Ca2+ + Mg2+)-ATPase could be a partial reflection of an increased rate of phosphorylation of the (Ca2+ + Mg2+)-ATPase of human erythrocyte membranes. 相似文献
9.
The cationic amphiphilic polypeptide gramicidin S inhibits the Ca2+-ATPase of human red-cell membranes by lowering the maximum velocity of the high-affinity component and the apparent affinity of the low-affinity component of the velocity-versus-ATP concentration curve of the enzyme. Gramicidin S does not alter the apparent affinity of the Ca2+-ATPase for Ca2+. Calmodulin is not essential for the inhibition, but increases the sensitivity of the enzyme to the inhibitor. The effects of gramicidin S on the Ca2+-ATPase can be reversed with phosphatidylcholine vesicles but not with buffer solutions, suggesting that gramicidin S acts from the lipid phase of the membrane. 相似文献
10.
(1) The response of the Ca2+-ATPase activity from human red cell membranes to ATP concentrations can be represented by the sum of two Michaelis-like curves: one with a Km of 2.5 micrometer and the other with a Km of 145 micrometer. (2) The maximum Ca2+-ATPase activity elicited by occupation of the site with lower Km represents about 10% of the activity attainable at non-limiting ATP concentrations. (3) 30--50% of the Ca2+-ATPase activity with lower Km remains in the absence of Mg2+ . Mg2+ increases V and the maximum effect of Ca2+, having no effect on the apparent affinities for ATP and Ca2+. (4) The large increase in Ca2+-ATPase activity which results from the occupation of the site with higher Km only takes place when Mg2+ is present. (5) Results are compatible with the idea that the Ca2+-ATPase from human red cell membranes has two classes of site for ATP binding, both of which are occupied when the enzyme catalyzes the hydrolysis of ATP at maximum rate. (6) The properties of the high affinity site suggest that this is the catalytic site of the Ca2+-ATPase. It is proposed that binding of ATP at the low affinity site regulates the turnover of the system. 相似文献
11.
Ca2+-ATPase of human erythrocyte membranes, after being washed to remove Ca2+ after incubation with the ion, was found to be activated. Stimulation of the ATPase was related neither to fluidity change nor to cytoskeletal degradation of the membranes mediated by Ca2+. Activation of the transport enzyme was also unaffected by detergent treatment of the membrane, but was suppressed when leupeptin was included during incubation of the membranes with Ca2+. Stimulation of the ATPase by a membrane-associated Ca2+-dependent proteinase was thus suggested. Much less 138 kDa Ca2+-ATPase protein could be harvested from a Triton extract of membranes incubated with Ca2+ than without Ca2+. Activity of the activated enzyme could not be further elevated by exogenous calpain, even after treatment of the membranes with glycodeoxycholate. There was also an overlap in the effect of calmodulin and the Ca2+-mediated stimulation of membrane Ca2+-ATPase. While Km(ATP) of the stimulated ATPase remained unchanged, a significant drop in the free-Ca2+ concentration for half-maximal activation of the enzyme was observed. 相似文献
12.
The stimulation in vitro of human red blood cell Ca2+-ATPase activity by thyroxine (T4) and triiodothyronine (T3) in physiological concentrations is shown to depend upon binding of iodothyronines to red cell membranes. Calmodulin enhances the activity of thyroid hormone in this model system but there is no direct interaction of calmodulin and hormone. 相似文献
13.
Danuta Kosk-Kosicka 《Molecular and cellular biochemistry》1990,99(2):75-81
We have compared properties of the red blood cell Ca2+-ATPase in two types of preparations: red cell membrane ghosts (enzyme in unfractionated membranes) and after purification (detergent-soluble enzyme). The Ca2+-ATPase activity was studied with respect to its requirement for: calmodulin, calcium, magnesium, monovalent cations, ionic strength, pH, and temperature. Sensitivity of the Ca2+-ATPase activity in the two preparations to anticalmodulin drugs and to engineered calmodulins with amino acid substitutions was determined. Finally, stoichiometry of the formation of phosphorylated enzyme intermediate (EP) and titrations of the ATP binding region with fluorescein 5-isothiocyanate (FITC) were characterized. For the first time a high phosphorylation level of 2.0–2.4 mmol EP/mg of purified enzyme is reported.The two enzyme preparations have been found to be very similar with respect to the dependency of all the regulating factors described here. These results complement findings reported from various laboratories on the similarity of other kinetic properties as well as the similarity of modulation of the Ca2+-ATPase activity by phospholipids and proteolysis in the membranous and purified enzyme. Thus, the purified detergent-soluble enzyme is very well suited for kinetic characterization of the red cell Ca2+-ATPase. 相似文献
14.
Fred L. Larsen Beat U. Raess Thomas R. Hinds Frank F. Vincenzi 《Journal of cellular biochemistry》1978,9(2):269-274
Red blood cells contain a protein that activates membrane-bound (Ca2+ + Mg2+)-ATPase and Ca2+ transport. The red blood cell activator protein is similar to a modulator protein that stimulates cyclic AMP phosphodiesterase. Wang and Desai [Journal of Biological Chemistry 252:4175–4184, 1977] described a modulator-binding protein that antagonizes the activation of cyclic AMP phosphodiesterase by modulator protein. In the present work, modulator-binding protein was shown to antagonize the activation of (Ca2+ + Mg2+)-ATPase and Ca2+ transport by red blood cell activator protein. The results further demonstrate the similarity between the activator protein from human red blood cells and the modulator protein from bovine brain. 相似文献
15.
Inhibition by quercetin of thyroid hormone stimulation in vitro of human red blood cell Ca2+-ATPase activity 总被引:1,自引:0,他引:1
Human red blood cell membrane Ca2+-ATPase activity is stimulated in vitro by physiological concentrations of thyroid hormone. Quercetin, a flavonoid that inhibits several membrane-linked ATPases, suppressed thyroid hormone action on red cell Ca2+-ATPase activity and also interfered with binding of the hormone by red cell membranes. These effects of quercetin were dose-dependent over a range of concentrations (1-50 microM). In contrast, in the absence of thyroid hormone, quercetin at low concentrations stimulated Ca2+-ATPase activity and at 50 microM inhibited the enzyme. The effects of quercetin at low concentrations (1-10 microM), namely, stimulation of Ca2+-ATPase and inhibition of membrane-binding of thyroid hormone, mimic those of thyroid hormone and are consistent with the thyronine-like structure of quercetin. At high concentrations, quercetin is generally inhibitory of Ca2+-ATPase activity. Chalcone, fisetin, hesperetin and tangeretin are other flavonoids shown to reduce susceptibility of membrane Ca2+-ATPase to hormonal stimulation. 相似文献
16.
Thyroid hormone (10(-11) to 10(-10) M) stimulates plasma membrane Ca2+-ATPase activity in vitro in various tissues, including the human red cell (RBC), by a calmodulin-requiring mechanism. Bepridil and cetiedil are Ca2+ antagonists with an intracellular (calmodulin-antagonist) site of action, as well as an effect on the calcium channel in excitable tissues. We have studied the actions of bepridil and cetiedil on Ca2+-ATPase in a channel-free membrane (RBC) to determine effectiveness of these agents as inhibitors of thyroid hormone action on the enzyme. Dose-response studies showed that thyroid hormone stimulation of Ca2+-ATPase activity in vitro was significantly inhibited by as little as 2 x 10(-5) M bepridil and cetiedil. IC50 values of bepridil and cetiedil for thyroid hormone response of the enzyme were 5 x 10(-5) and 2 x 10(-5) M, respectively, whereas IC50s of these agents for enzyme activity in the absence of thyroid hormone were both 10(-4) M. Progressive addition of purified rat testis calmodulin in vitro (10-150 ng calmodulin/mg membrane protein) restored hormone responsiveness in the presence of bepridil and cetiedil. Binding of labeled thyroid hormone by RBC membranes was unaffected by bepridil and cetiedil (up to 2 x 10(-4) M). Thus, bepridil and cetiedil are Ca2+ antagonists that reversibly inhibit thyroid hormone action on human RBC Ca2+-ATPase by a calmodulin-dependent mechanism. Thyroid hormone effect on Ca2+-ATPase is more susceptible to bepridil and cetiedil inhibition than is basal enzyme activity. 相似文献
17.
In reconstituted human red blood cells a difference was found in (Ca2+ + Mg2+)-ATPase activity and in Ca2+ efflux at 37 degrees C, depending on the side of the membrane at which the monovalent cations K+ and Na+ were placed. Under the conditions used, (Ca2+ + Mg2+)-ATPase activity and Ca2+ efflux was highest when K+ (35 +/- 0.5 mM (+/- S.E.), mean of four experiments) was at the inside and Na+ (130 mM) at the outside of the ghost membrane. 相似文献
18.
In reconstituted human red blood cells a difference was found in (Ca2+ + Mg2+)-ATPase activity and in Ca2+ efflux at 37°C, depending on the side of the membrane at which the monovalent cations K+ and Na+ were placed. Under the conditions used, (Ca2+ + Mg2+)-ATPase activity and Ca2+ efflux was highest when K+ (, mean of four experiments) was at the inside and Na+ (130 mM) at the outside of the ghost membrane. 相似文献
19.
(1) At ATP concentrations up to 30 micrometer addition of 0.5 mM MgCl2 in the reaction mixture increases both the rate of formation and the steady-state level of the phosphoenzyme of the Ca2+-ATPase from human red cell membranes. Under these conditions Mg2+ has no effect on the rate of dephosphorylation, which remains slow. (2) In the presence of Mg2+ the rate of dephosphorylation is increased 5 to 10 times by high (1 mM) concentrations of ATP. (3) Provided Mg2+ has reacted with the phosphoenzyme, acceleration of dephosphorylation by ATP takes place in the absence of Mg2+. This suggests that the role of Mg2+ on dephosphorylation is to convert the phosphoenzyme into a form that, after combination with ATP, reacts rapidly with water. (4) The results are consistent with the idea that combination of ATP at a non-catalytic site is needed for rapid dephosphorylation of the Ca2+-ATPase. 相似文献
20.
M R Deziel R S Safeer S D Blas F B Davis P J Davis 《Biochimica et biophysica acta》1992,1110(1):119-122
In a concentration-dependent manner (5.5-27.5 mmol/l), D-glucose incubated in vitro with human erythrocyte membranes at 37 degrees C for 1 h inhibited membrane Ca(2+)-ATPase activity by up to 75%. The IC50 was 11 mmol/l. L-Glucose was ineffective, as were 3-O-methylglucose, 2-deoxyglucose, sorbitol and myo-inositol. In contrast, D-fructose decreased Ca(2+)-ATPase activity nearly as effectively as D-glucose and mannose and galactose at 11 mmol/l were less than 50% as effective as D-glucose. Tunicamycin (12 pmol/l), but not 10 mmol/l aminoguanidine, progressively antagonized in vitro the D-glucose effect on the enzyme. Erythrocyte membrane Ca(2+)-ATPase activity may be regulated by glycosylation, rather than nonenzymatic glycation. 相似文献