首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
2.
Adenoviruses are nonenveloped viruses with an approximately 36-kb double-stranded DNA genome that replicate in the nucleus. Protein VII, an abundant structural component of the adenovirus core that is strongly associated with adenovirus DNA, is imported into the nucleus contemporaneously with the adenovirus genome shortly after virus infection and may promote DNA import. In this study, we evaluated whether protein VII uses specific receptor-mediated mechanisms for import into the nucleus. We found that it contains potent nuclear localization signal (NLS) activity by transfection of cultured cells with protein VII fusion constructs and by microinjection of cells with recombinant protein VII fusions. We identified three NLS-containing regions in protein VII by deletion mapping and determined important NLS residues by site-specific mutagenesis. We found that recombinant protein VII and its NLS-containing domains strongly and specifically bind to importin alpha, importin beta, importin 7, and transportin, which are among the most abundant cellular nuclear import receptors. Moreover, these receptors can mediate the nuclear import of protein VII fusions in vitro in permeabilized cells. Considered together, these data support the hypothesis that protein VII is a major NLS-containing adaptor for receptor-mediated import of adenovirus DNA and that multiple import pathways are utilized to promote efficient nuclear entry of the viral genome.  相似文献   

3.
Hepatitis C virus core protein (Core) contributes to HCV pathogenicity. Here, we demonstrate that Core impairs growth in budding yeast. We identify HSP90 inhibitors as compounds that reduce intracellular Core protein level and restore yeast growth. Our results suggest that HSC90 (Hsc82) may function in the protection of the nascent Core polypeptide against degradation in yeast and the C-terminal region of Core corresponding to the organelle-interaction domain was responsible for Hsc82-dependent stability. The yeast system may be utilized to select compounds that can direct the C-terminal region to reduce the stability of Core protein.  相似文献   

4.
5.
The capsid of hepatitis C virus (HCV) particles is considered to be composed of the mature form (p21) of core protein. Maturation to p21 involves cleavage of the transmembrane domain of the precursor form (p23) of core protein by signal peptide peptidase (SPP), a cellular protease embedded in the endoplasmic reticulum membrane. Here we have addressed whether SPP-catalyzed maturation to p21 is a prerequisite for HCV particle morphogenesis in the endoplasmic reticulum. HCV structural proteins were expressed by using recombinant Semliki Forest virus replicon in mammalian cells or recombinant baculovirus in insect cells, because these systems have been shown to allow the visualization of HCV budding events and the isolation of HCV-like particles, respectively. Inhibition of SPP-catalyzed cleavage of core protein by either an SPP inhibitor or HCV core mutations not only did not prevent but instead tended to facilitate the observation of viral buds and the recovery of virus-like particles. Remarkably, although maturation to p21 was only partially inhibited by mutations in insect cells, p23 was the only form of core protein found in HCV-like particles. Finally, newly developed assays demonstrated that p23 capsids are more stable than p21 capsids. These results show that SPP-catalyzed cleavage of core protein is dispensable for HCV budding but decreases the stability of the viral capsid. We propose a model in which p23 is the form of HCV core protein committed to virus assembly, and cleavage by SPP occurs during and/or after virus budding to predispose the capsid to subsequent disassembly in a new cell.  相似文献   

6.
7.
The matrix (M) protein of vesicular stomatitis virus (VSV) is a potent inhibitor of bidirectional nuclear transport. Here we demonstrate that inhibition occurs when M protein is in the nucleus of Xenopus laevis oocytes and that M activity is readily reversed by a monoclonal antibody (alphaM). We identify a region of M protein, amino acids 51 to 59, that is required both for inhibition of transport and for efficient recognition by alphaM. When expressed in transfected HeLa cells, M protein colocalizes with nuclear pore complexes (NPCs) at the nuclear rim. Moreover, mutation of a single amino acid, methionine 51, eliminates both transport inhibition and targeting to NPCs. We propose that M protein inhibits bidirectional transport by interacting with a component of the NPC or an NPC-associated factor that participates in nucleocytoplasmic transport.  相似文献   

8.
In this report, we present biochemical and mutational analyses of the duck hepatitis B virus core protein (DHBcAg). The data show that duck hepatitis B virus core particles consist of at least four different proteins with sizes between 32 and 34 kilodaltons, all of which react with DHBcAg-specific antiserum. Most of the heterogeneity was found to be due to extensive phosphorylation of the DHBcAg C terminus. Bacterially synthesized DHBcAg was not phosphorylated, and mutations within the viral P gene did not influence phosphorylation, suggesting that the kinase activity is not encoded by the viral C or P gene. Removal of the last 12 C-terminal DHBcAg amino acids, which are at least in part located on the core particle surface, had only a minor effect on DHBcAg phosphorylation and did not interfere with packaging of the capsids into viral envelopes or with genome replication. However, an attempt to infect ducklings with this mutant failed. Removal of the last 36 C-terminal DHBcAg amino acids abolished core protein heterogeneity but did not prevent particle formation. Interestingly, these particles were defective in genome replication, although they could still package viral pregenomic RNA.  相似文献   

9.
Efficient translation of most eukaryotic mRNAs results from synergistic cooperation between the 5' m(7)GpppN cap and the 3' poly(A) tail. In contrast to such mRNAs, the polyadenylated genomic RNAs of picornaviruses are not capped, and translation is initiated internally, driven by an extensive sequence termed IRES (for internal ribosome entry segment). Here we have used our recently described poly(A)-dependent rabbit reticulocyte lysate cell-free translation system to study the role of mRNA polyadenylation in IRES-driven translation. Polyadenylation significantly stimulated translation driven by representatives of each of the three types of picornaviral IRES (poliovirus, encephalomyocarditis virus, and hepatitis A virus, respectively). This did not result from a poly(A)-dependent alteration of mRNA stability in our in vitro translation system but was very sensitive to salt concentration. Disruption of the eukaryotic initiation factor 4G-poly(A) binding protein (eIF4G-PABP) interaction or cleavage of eIF4G abolished or severely reduced poly(A) tail-mediated stimulation of picornavirus IRES-driven translation. In contrast, translation driven by the flaviviral hepatitis C virus (HCV) IRES was not stimulated by polyadenylation but rather by the authentic viral RNA 3' end: the highly structured X region. X region-mediated stimulation of HCV IRES activity was not affected by disruption of the eIF4G-PABP interaction. These data demonstrate that the protein-protein interactions required for synergistic cooperativity on capped and polyadenylated cellular mRNAs mediate 3'-end stimulation of picornaviral IRES activity but not HCV IRES activity. Their implications for the picornavirus infectious cycle and for the increasing number of identified cellular IRES-carrying mRNAs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号