首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The influence of inositol hexakisphosphate (IHP) and its cupric ion chelate complexes on alkaline phosphatase (APase) catalysis of p-nitrophenyl phosphate hydrolysis at pH 7.2 has been determined. Both IHP and (IHP-Cu) complexes, but not Cu(II) alone, are effective inhibitors of the enzyme and are of the strictly competitive type with Ki values in the microM range. Without added inhibitors present, the kinetic parameters are kcat 5.7 x 10(3) min(-1); and KM, 18 microM. In the presence of 62 microM IHP, kcat was essentially unchanged with an apparent KM of 68 microM giving a Ki of 22 microM. In the presence of an (IHP-Cu) complex (62 microM IHP, 128 microM Cu(II], the apparent KM was 55 microM and Ki was 30 microM. At a ratio of Cu(II):IHP of 6.0 (372:62 microM) the apparent KM was 30 microM and Ki was 94 microM. The inhibitory effect of (IHP-Cu) complexes thus decreases as the IHP binding sites for cupric ions become saturated. A high ionic strength environment markedly reduces the inhibitory effect of IHP. Previous studies have also shown that rates of APase inactivation by (IHP-Cu) complexes are also ionic strength sensitive [1]. The inhibition of APase activity by either IHP or its coordinate complexes with cupric ions is evidence for their interaction at the enzyme's catalytic sites. Such results thus provide support for an essential element of the mechanism previously suggested for the reversible inactivation (as opposed to inhibition) of APase by (IHP-Cu) chelate complexes, viz., that it may be due to a metal ion exchange reaction leading to the formation of a Cu(II)-substituted enzyme.  相似文献   

2.
《Inorganica chimica acta》1988,149(2):241-245
ESR spectra at both X and Q band are reported for manganese(II) ions doped into the seven coordinate complexes M(L)3(NO3)2 (M = Co, Ni, Zn or Cd; L = pyridine or substituted pyridine). The zero field splitting parameters D and λ (= E/D) are deduced. All complexes show considerable deviation from cubic symmetry, as can be expected for a seven coordinate structure. The distinctly lower D value of Ni(Mn)(pyridine)3(NO3)2, as compared to the analogous cobalt and zinc complex, suggests a geometry tending towards an octahedral structure. The steric hindrance by the substituent reduces the D value.  相似文献   

3.
Potassium tetrachloroplatinate (K2PtCl4) inactivates dihydropteridine reductase from human brain in a time-dependent and irreversible manner. The inactivation has been followed by measuring enzyme activity and fluorescence changes. The enzyme is completely protected from inactivation by NADH, the pterin cofactor [quinonoid 6-methyl-7,8-dihydro(6H)pterin] and dithiothreitol. Evidence is presented that K2PtCl4 reacts at the active site and that (a) thiol group(s) is involved in, or is masked by, this reaction. K2PtCl4 is a stronger inhibitor of human brain dihydropteridine reductase that cis- and trans-diaminodichloroplatinum, cis-dichloro[ethylenediamine]platinum and K4Fe(CN)6, whereas H2PtCl6 is considerably weaker and (Ph3P)3RhCl is inactive.  相似文献   

4.
5.
6.
1. A purified preparation of alkaline phosphatase from calf-intestinal mucosa was phosphorylated by (32)P-labelled PP(i) at a serine residue on the enzyme. Under the conditions employed, up to 0.15mum-labelled sites were obtained from 1mum-[(32)P]PP(i). 2. The phosphorylated enzyme was labile, the rate of dephosphorylation being similar to the overall rate of substrate hydrolysis. 3. A stopped-flow technique was used to determine the number of phosphomonoesterase active sites, which agreed with the number of (32)P-labelled sites. 4. It is concluded that calf-intestinal alkaline phosphatase is both a phosphomonoesterase and a pyrophosphatase.  相似文献   

7.
Mehta BD  Jog SP  Johnson SC  Murthy PP 《Phytochemistry》2006,67(17):1874-1886
Phytic acid is the most abundant inositol phosphate in cells; it constitutes 1-5% of the dry weight of cereal grains and legumes. Phytases are the primary enzymes responsible for the hydrolysis of phytic acid and thus play important roles in inositol phosphate metabolism. A novel alkaline phytase in lily pollen (LlALP) was recently purified in our laboratory. In this paper, we describe the cloning and characterization of LlALP cDNA from lily pollen. Two isoforms of alkaline phytase cDNAs, LlAlp1 and LlAlp2, which are 1467 and 1533 bp long and encode proteins of 487 and 511 amino acids, respectively, were identified. The deduced amino acid sequences contains the signature heptapeptide of histidine phosphatases, -RHGXRXP-, but shares < 25% identity to fungal histidine acid phytases. Phylogenetic analysis reveals that LlALP is most closely related to multiple inositol polyphosphate phosphatase (MINPP) from humans (25%) and rats (23%). mRNA corresponding to LlAlp1 and LlAlp2 were expressed in leaves, stem, petals and pollen grains. The expression profiles of LlAlp isoforms in anthers indicated that mRNA corresponding to both isoforms were present at all stages of flower development. The expression of LlAlp2 cDNA in Escherichia coli revealed the accumulation of the active enzyme in inclusion bodies and confirmed that the cDNA encodes an alkaline phytase. In summary, plant alkaline phytase is a member of the histidine phosphatase family that includes MINPP and exhibits properties distinct from bacterial and fungal phytases.  相似文献   

8.
Isozymes of bovine intestinal alkaline phosphatase   总被引:2,自引:0,他引:2  
Alkaline phosphatases from calf and bovine small intestines have been isolated in homogeneous form from both mucosa and luminal contents. The detergent-solubilized calf enzyme resolves into two peaks of activity, C-1 and C-2, on chromatofocusing. Only one of these activity peaks is present in the enzyme from the adult animal. Amino acid compositions, N-terminal sequences, and tryptic peptide maps show that C-1 and C-2 are isozymes of differing primary structure and that the adult form of the enzyme is identical to C-2. The developmentally controlled expression of the two isozymes reported here suggests a molecular basis for the previous indications that functional changes in intestinal alkaline phosphatase occur with tissue maturation. The sugar composition of the carbohydrate chains of these isozymes has been determined and enzymatic deglycosylation with endo-beta-N-acetylglucosaminidase-F indicates two N-linked and one or more O-linked glycoconjugates/monomer.  相似文献   

9.
10.
Heterogeneity of calf intestinal alkaline phosphatase   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
13.
The electronic and 1H NMR spectra are reported for the cobalt(II) alkaline phosphatase (EC 3.1.3.1.) system at pH around 6 in the range 0-2 mol of cobalt per mol protein. It is shown that under the present experimental conditions cobalt(II) selectively populates the A sites. Three isotropically shifted NH signals have been detected in the A site that indicate the presence of three histidines in the coordination sphere of cobalt(II). The electronic spectra and the nuclear relaxation properties are consistent with pentacoordination of cobalt(II) in the A site. The finding of reproducible preparation routes for the derivatives, and of appropriate experimental conditions for the observation of their 1H NMR spectra, open new possibilities for the spectroscopic investigation of alkaline phosphatase.  相似文献   

14.
The uptake of cobalt(II) ions by apoalkaline phosphatase at pH 8 (the pH optimum for activity) has been investigated by the combined use of electronic and 1H NMR spectroscopies. The presence of fast-relaxing high spin cobalt(II) ions in the active site cavity of the protein induces sizable isotropic shifts of the 1H NMR signals of metal-coordinated protein residues, allowing us to propose a metal uptake pattern by the various metal binding sites both in the presence and in the absence of magnesium ions. In the absence of magnesium the active site is not organized in specific metal binding sites. The first equivalent of cobalt(II) ions per dimer binds in an essentially unspecific and possibly fluxional fashion, giving rise to a six-coordinated chromophore. The second and third equivalents induce the formation of increasing amounts of metal ions pairs, cooperatively arranged into the A and B sites of the same subunit with a five- and six-coordinated geometry, respectively. The fourth and fifth equivalents induce the formation of fully blocked A-B pairs in both subunits. Magnesium shows the property of organizing the metal binding sites, probably through coordination to the C sites. Electronic and 1H NMR titration with Co2+ ions show that the initial amount of fluxional cobalt is smaller than in the absence of magnesium and that A-B pairs are more readily formed. Titration of fully metalated Co4Mg2alkaline phosphatase samples with phosphate confirms binding of only one phosphate per dimer.  相似文献   

15.
Inactivation of spermidine N1-acetyltransferase with alkaline phosphatase   总被引:2,自引:0,他引:2  
I Matsui  S Otani  M Kamei  S Morisawa 《FEBS letters》1982,150(1):211-213
Spermidine N1-acetyltransferase in an extract from phytohemagglutinin-stimulated bovine lymphocytes was inactivated by preincubation with alkaline phosphatase. Inactivation of the acetylase with the phosphatase was totally inhibited by addition of pyrophosphate. These results suggest that spermidine N1-acetyltransferase, the rate-limiting enzyme in the biodegradative pathway of polyamines, is inactivated by dephosphorylation. A similar effect of alkaline phosphatase on the acetylase in an extract from Escherichia coli was also observed. The acetylase has a rapid rate of turnover and the rapid loss of the enzyme activity may be to some extent regulated by the covalent modification.  相似文献   

16.
17.
18.
Summary Among the various bivalent metal ions tested, only copper(II) was found to bind to thiostrepton (M rr 1650) in a stoichiometric ratio of 4:1. The binding of four copper ions to a thiostrepton molecule resulted in (a) irreversible loss in biological activity and (b) a change in the ultraviolet absorption spectrum of the antibiotic. Potentiometric titration of thiostrepton in the presence of copper(II) revealed dissociation of the antibiotic with a loss of 11 protons/molecule. Based on the preferential ability of copper(II) to bind to thiostrepton in the presence of some copper-complexing compounds containing similar ligand groups to the antibiotic, the possible co-ordinating atoms of the thiostrepton molecule involved in binding to the metal ion are discussed.  相似文献   

19.
20.
Rat matrix-induced alkaline phosphatase is an enzyme which requires magnesium and zinc ions for its maximal activity. Two Zn(II) ions and one Mg(II) ion are bound to each subunit of native dimeric enzyme. The presence of magnesium ion (10-100 microM) or zinc ion (7-20 nM) alone is sufficient to stimulate apoenzyme activity. However maximal activity (264 U/mg) requires the presence of both ions. Binding of Zn(II) ions to the Mg(II) binding site causes a strong inhibition of the apoenzyme while the binding of Mg(II) on Zn(II) binding site is not sufficient to stimulate PNPPase activity of the apoenzyme. Binding of both ions to the enzyme molecule did not change the apparent dissociation constant for PNPP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号