首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of affinity tags for protein purification   总被引:11,自引:0,他引:11  
Affinity tags are highly efficient tools for purifying proteins from crude extracts. To facilitate the selection of affinity tags for purification projects, we have compared the efficiency of eight elutable affinity tags to purify proteins from Escherichia coli, yeast, Drosophila, and HeLa extracts. Our results show that the HIS, CBP, CYD (covalent yet dissociable NorpD peptide), Strep II, FLAG, HPC (heavy chain of protein C) peptide tags, and the GST and MBP protein fusion tag systems differ substantially in purity, yield, and cost. We find that the HIS tag provides good yields of tagged protein from inexpensive, high capacity resins but with only moderate purity from E. coli extracts and relatively poor purification from yeast, Drosophila, and HeLa extracts. The CBP tag produced moderate purity protein from E. coli, yeast, and Drosophila extracts, but better purity from HeLa extracts. Epitope-based tags such as FLAG and HPC produced the highest purity protein for all extracts but require expensive, low capacity resin. Our results suggest that the Strep II tag may provide an acceptable compromise of excellent purification with good yields at a moderate cost.  相似文献   

2.
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG‐binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin‐binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three‐tag system comprised of CBP, streptavidin‐binding peptide (SBP) and hexa‐histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP‐His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems.  相似文献   

3.
Kyriakakis P  Tipping M  Abed L  Veraksa A 《Fly》2008,2(4):229-235
Tandem affinity purification (TAP) has been widely used for the analysis of protein complexes. We investigated the parameters of the recently developed TAP method (GS-TAP) and its application in Drosophila. This new tag combination includes two Protein G modules and a streptavidin binding peptide (SBP), separated by one or two TEV protease cleavage sites. We made pMK33-based GS-TAP vectors to allow for generation of stable cell lines using hygromycin selection and inducible expression from a metallothionein promoter, as well as pUAST-based vectors that can be used for inducible expression in flies. Rescue experiments in flies demonstrated that the GS-TAP tag preserves the function of the tagged protein. We have done parallel purifications of proteins tagged with the new GS-TAP tag or with the conventional TAP tag (containing the Protein A and calmodulin binding peptide domains) at the amino terminus, using both cultured cells and embryos. A major difference between the two tags was in the levels of contaminating proteins, which were significantly lower in the GS-TAP purifications. The GS-TAP procedure also resulted in higher yield of the bait protein. Overall, GS-TAP is an improved method of protein complex purification because it provides a superior signal-to-noise ratio of the bait protein relative to contaminants in purified material.  相似文献   

4.
《Gene》1997,186(1):55-60
Calmodulin-binding peptide (CBP), a peptide of 26 amino acids derived from muscle myosin light chain kinase (MLCK), binds to calmodulin with nanomolar affinity. Proteins fused in frame with CBP can be purified from crude E. coli lysates in a single step using calmodulin affinity chromatography (Stofko-Hahn et al., 1992). Because the binding between CBP and calmodulin is calcium-dependent, the fusion protein can be eluted from the resin with virtually any buffer containing EGTA (2 mM) and used directly for many applications. To take full advantage of this affinity purification system, we constructed the versatile CBP fusion protein expression vector pCAL-n. The CBP coding sequence was positioned for fusion at the N-terminus, an advantage that ensures consistent high level synthesis of fusion proteins due to the efficient translation of the CBP in E. coli. The production of fusion proteins from pCAL-n is controlled by the tightly regulated T7lacO promoter. A versatile multiple cloning site (MCS) was included to facilitate the cloning of genes of interest. The protein coding sequence for the enzyme c-Jun N-terminal kinase (JNK) was inserted into the MCS of pCAL-n, and the resulting fusion protein CBP-JNK synthesized in E. coli cells at 15–20 mg/l culture. CBP-JNK was purified to near homogeneity in one step with calmodulin affinity resin. Purified CBP-JNK is fully active, and the CBP peptide tag can be removed by cleavage with thrombin. We also show that CBP can be efficiently phosphorylated by cAMP-dependent protein kinase. Hence, the purified fusion proteins can be labeled directly with [γ-32P]ATP and used to probe protein–protein or protein–nucleic acid interactions.  相似文献   

5.
6.
Identification of protein-protein interactions is essential for elucidating the biochemical mechanism of signal transduction. Purification and identification of individual proteins in mammalian cells have been difficult, however, due to the sheer complexity of protein mixtures obtained from cellular extracts. Recently, a tandem affinity purification (TAP) method has been developed as a tool that allows rapid purification of native protein complexes expressed at their natural level in engineered yeast cells. To adapt this method to mammalian cells, we have created a TAP tag retroviral expression vector to allow stable expression of the TAP-tagged protein at close to physiological levels. To demonstrate the utility of this vector, we have fused a TAP tag, consisting of a protein A tag, a cleavage site for the tobacco etch virus (TEV) protease, and the FLAG epitope, to the N terminus of human SMAD3 and SMAD4. We have stably expressed these proteins in mammalian cells at desirable levels by retroviral gene transfer and purified native SMAD3 protein complexes from cell lysates. The combination of two different affinity tags greatly reduced the number of nonspecific proteins in the mixture. We have identified HSP70 as a specific interacting protein of SMAD3. We demonstrated that SMAD3, but not SMAD1, binds HSP70 in vivo, validating the TAP purification approach. This method is applicable to virtually any protein and provides an efficient way to purify unknown proteins to homogeneity from the complex mixtures found in mammalian cell lysates in preparation for identification by mass spectrometry.  相似文献   

7.
Tsai A  Carstens RP 《Nature protocols》2006,1(6):2820-2827
This protocol describes a method that we developed to adapt the tandem affinity purification (TAP) approach for use in mammalian cells. The protocol involves fusing a protein of interest with a tandem tag consisting of two FLAG tags (FF) followed by two protein-A immunoglobulin G (IgG) binding domains (ZZ). The protocol improves upon previously published TAP approaches by employing FLAG in place of calmodulin binding peptide (CBP) with resulting higher recovery during purification. In addition, we use a bicistronic expression system that ensures recovery of stably transfected cell lines expressing easily detectable levels of the protein of interest. A method is also presented for generating cytoplasmic and nuclear extracts, which extends use of this protocol to identify protein-protein interactions occurring specifically in the cytoplasm or nucleus. This protocol facilitates the preparation of partially purified recombinant protein and identification of protein-protein interactions in mammalian cell culture models. The protocol can be completed in 34 h.  相似文献   

8.
A novel multiple affinity purification (MAFT) or tandem affinity purification (TAP) tag has been constructed. It consists of the calmodulin binding peptide, six histidine residues, and three copies of the hemagglutinin epitope. This 'CHH' MAFT tag allows two or three consecutive purification steps, giving high purity. Active Clb2-Cdc28 kinase complex was purified from yeast cells after inserting the CHH tag into Clb2. Associated proteins were identified using mass spectrometry. These included the known associated proteins Cdc28, Sic1 and Cks1. Several other proteins were found including the 70 kDa chaperone, Ssa1.  相似文献   

9.
A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification1. Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast2,3 but more recently has been adapted to use in mammalian cells4-8.As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E9,10.The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation10. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence8. To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter.Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous proteins apparently specific to the eIF4E pull-down (when compared to control cell lines expressing the TAP tag alone). The identities of the proteins were obtained by excision of the bands from 1D SDS-PAGE and subsequent tandem mass spectrometry. The identified components included the known eIF4E binding proteins eIF4G and 4EBP-1. In addition, other components of the eIF4F complex, of which eIF4E is a component were identified, namely eIF4A and Poly-A binding protein. The ability to identify not only known direct binding partners as well as secondary interacting proteins, further highlights the utility of this approach in the characterization of proteins of unknown function.  相似文献   

10.
质谱技术高速发展,检测灵敏度不断提高,但区分特异性与非特异性相互作用仍然是研究相互作用蛋白的瓶颈,获得高纯度的蛋白复合体是鉴定相互作用蛋白的限制性因素。近年来串联亲和纯化(TAP)技术的产生和发展有效解决了相互作用蛋白鉴定中的特异性问题。TAP技术是将N端或C端TAP标签与目的蛋白融合并导入靶细胞进行表达,裂解细胞释放融合蛋白,在接近生理状态下利用标签两步特异性亲和洗脱得到蛋白复合体。其中,TAP标签蛋白的选择和优化是该技术成功的关键。  相似文献   

11.
Plasmodium falciparum is the causative agent of severe human malaria, responsible for over 2 million deaths annually. Of the 5,300 polypeptides predicted to control the parasite life cycle in mosquitoes and humans, 60% are of unknown function. A major challenge of malaria postgenomic biology is to understand how the 5,300 predicted proteins coexist and interact to perform the essential tasks that define the complex life cycle of the parasite. One approach to assign function to these proteins is by identifying their physiological partners. Here we describe the use of tandem affinity purification (TAP) and mass spectrometry for identification of native protein interactions and purification of protein complexes in P. falciparum. Transgenic parasites were generated which express the translation elongation factor PfEF-1β harboring a C-terminal PTP tag which consists of the protein C epitope, a tobacco etch virus protease cleavage site, and two protein A domains. Purification of PfEF-1β-PTP from crude extracts followed by mass spectrometric analysis revealed, in addition to the tagged protein itself, the presence of the native PfEF-1β, the G-protein PfEF-1α, and two new proteins that we named PfEF-1γ and PfEF-1δ based on their homology to other eukaryotic γ and δ translation elongation factor subunits. These data, which constitute the first application of TAP for purification of a protein complex under native conditions in P. falciparum, revealed that the translation elongation complex in this organism contains at least two subunits of PfEF-1β. The success of this approach will set the stage for a systematic analysis of protein interactions in this important human pathogen.  相似文献   

12.
A conventional affinity protein purification system often requires a separate protease to separate the target protein from the affinity tag. This paper describes a unique protein purification system in which the target protein is fused to the C-terminus of a modified protein splicing element (intein). A small affinity tag is inserted in a loop region of the endonuclease domain of the intein to allow affinity purification. Specific mutations at the C-terminal splice junction of the intein allow controllable C-terminal peptide bond cleavage. The cleavage is triggered by addition of thiols such as dithiothreitol or free cysteine, resulting in elution of the target protein while the affinity-tagged intein remains immobilized on the affinity column. This system eliminates the need for a separate protease and allows purification of a target protein without the N-terminal methionine. We have constructed general cloning vectors and demonstrated single-column purification of several proteins. In addition, we discuss several factors that may affect the C-terminal peptide bond cleavage activity.  相似文献   

13.
We developed a method for efficient chromosome tagging in Pichia pastoris, using a useful tandem affinity purification (TAP) tag. The TAP tag, designated and used here as the THF tag, contains a thrombin protease cleavage site for removal of the TAP tag and a hexahistidine sequence (6× His) followed by three copies of the FLAG sequence (3× FLAG) for affinity purification. Using this method, THF-tagged RNA polymerases I, II, and III were successfully purified from P. pastoris. The method also enabled us to purify the tagged RNA polymerase II on a large scale, for its crystallization and preliminary X-ray crystallographic analysis. The method described here will be widely useful for the rapid and large-scale preparation of crystallization grade eukaryotic multi-subunit protein complexes.  相似文献   

14.
目的:开发一种既能用于亲和纯化目标蛋白,又可介导不能自主进入细胞的药物蛋白跨膜转运到细胞内发挥活性的双功能标签。方法:从已有文献资料中挑选四种富含碱性氨基酸的钙调蛋白结合肽(calmodulin binding peptide,CBP),将其与绿色荧光蛋白(EGFP)融合表达,然后采用与钙调蛋白(calmodulin,CaM)亲和结合过程来筛选与CaM具有最高亲和力的CBP;随后采用荧光显微镜检测、激光共聚焦显微镜检测以及流式细胞术等技术来分析测定和比较候选CBP序列将EGFP重组蛋白自主转运进入细胞的能力。最后将筛选到的新型CBP双功能标签与凋亡蛋白融合表达,考察其与CaM亲和结合后纯化重组凋亡蛋白的能力,以MTT法分析此重组蛋白进入肿瘤细胞抑制生长的能力。结果:通过CaM-CBP亲和层析筛选出与CaM具高有亲和力的三种CBP序列;从重组蛋白胞内荧光检测结果得知,带有野生型骨骼肌肌球蛋白轻链激酶CBP序列(MLCK)的重组EGFP蛋白具有最佳跨膜转运效率,且显著高于来源于艾滋病毒的经典穿膜肽TAT的穿膜效率。以此MLCK新型双功能标签成功地通过CaM-CBP亲和结合纯化得到重组凋亡蛋白,并可将重组凋亡蛋白转运进入细胞内发挥抗肿瘤作用。重组凋亡蛋白对MGC-803、H460、HeLa三种肿瘤细胞生长的24h半抑制浓度(IC50)分别为:1. 18μmol/L、1. 23μmol/L、1. 23μmol/L。结论:筛选得到一种新型双功能标签MLCK,其可通过与CaM高亲和作用进行亲和纯化;同时标签本身还具有和典型穿膜肽一样的高效跨膜转运功能,可将药物蛋白自主转运进入细胞,发挥药物的生物活性。因此,新型双功能标签既可用于药物蛋白的亲和纯化,又兼具体内跨膜运输作用,可广泛用于各种新型药物的开发。  相似文献   

15.
A Ca2+ -dependent calmodulin-binding peptide (CBP) is an attractive tag for affinity purification of recombinant proteins, especially membrane proteins, since elution is simply accomplished by removing/chelating Ca2+. To develop a single-step calmodulin/CBP-dependent purification procedure for Escherichia coli nicotinamide nucleotide transhydrogenase, a 49 amino acid large CBP or a larger 149 amino acid C-terminal fragment of human plasma membrane Ca2+ -ATPase (hPMCA) was fused C-terminally to the beta subunit of transhydrogenase. Fusion using the 49 amino acid fragment resulted in a dramatic loss of transhydrogenase expression while fusion with the 149 amino acid fragment gave a satisfactory expression. This chimeric protein was purified by affinity chromatography on calmodulin-Sepharose with mild elution with EDTA. The purity and activity were comparable to those obtained with His-tagged transhydrogenase and showed an increased stability. CBP-tagged transhydrogenase contained a 4- to 10-fold higher amount of the alpha subunit relative to the beta subunit as compared to wild-type transhydrogenase. To determine whether the latter was due to the CBP tag, a double-tagged transhydrogenase with both an N-terminal 6x His-tag and a CBP-tag, purified by using either tag, gave no significant increase in purity as compared to the single-tagged protein. The reasons for the altered subunit composition are discussed. The results suggest that, depending on the construct, the CBP-tag may be a suitable affinity purification tag for membrane proteins in general.  相似文献   

16.
Affinity tags have become highly popular tools for purifying recombinant proteins from crude extracts by affinity chromatography. Besides, short peptides are excellent ligands for affinity chromatography, as they are not likely to cause an immune response in case of leakage into the product, they are more stable than antibodies to elution and cleaning conditions and they usually have very acceptable selectivity. Hydropathically complementary peptides designed de novo show enough selectivity to be used successfully as peptide ligands for protein purification from crude extracts. Recognition specificity and selectivity in the interaction between the complementary peptide pair His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu and Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe have been demonstrated by other authors. In this work, we designed a recombinant protein purification method using a peptide affinity tag that binds to a peptide-binding partner immobilized on a chromatographic matrix. The enhanced green fluorescent protein expressed (EGFP) in Escherichia coli was used as the model. The peptide Gly-Gly-Gly-His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu was synthesized by solid phase using the Fmoc chemistry and immobilized in NHS-Sepharose (PC-Sepharose). Gly residues were added as a spacer arm at the N terminus. The EGFP was expressed either with the fusion tag Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe on the C terminus (EGFP-CPTag) or without any fusion tag. After cell disruption, the extract was directly applied to the PC-Sepharose column equilibrated with 20mM sodium phosphate buffer, pH 7.0. The adsorbed EGFP-CPTag was then eluted with 1M Tris. The yield was 98% and the purification factor 4.6. By contrast, EGFP without tag pass through without interacting with the PC-Sepharose column. The method designed can be applied for the purification of other recombinant proteins.  相似文献   

17.
Tandem affinity purification (TAP) is a generic two-step affinity purification protocol that enables the isolation of protein complexes under close-to-physiological conditions for subsequent analysis by mass spectrometry. Although TAP was instrumental in elucidating the yeast cellular machinery, in mammalian cells the method suffers from a low overall yield. We designed several dual-affinity tags optimized for use in mammalian cells and compared the efficiency of each tag to the conventional TAP tag. A tag based on protein G and the streptavidin-binding peptide (GS-TAP) resulted in a tenfold increase in protein-complex yield and improved the specificity of the procedure. This allows purification of protein complexes that were hitherto not amenable to TAP and use of less starting material, leading to higher success rates and enabling systematic interaction proteomics projects. Using the well-characterized Ku70-Ku80 protein complex as an example, we identified both core elements as well as new candidate effectors.  相似文献   

18.
Proteins fused to the elastin-like polypeptide (ELP) tag can be selectively separated from crude cell extract without chromatography. To avoid the interference of the ELP tag on properties of the target protein, it is necessary to remove the ELP tag from target protein by protease digestion. Therefore, an additional chromatographic purification step is required to remove the proteases, and this is time- and labor-consuming. Here we demonstrate the utility of the ELP-tagged proteases for cleavage of ELP fusion proteins, allowing one-step removal of the cleaved ELP tag and ELP-tagged proteases without chromatography.  相似文献   

19.
20.
Isolation and dissection of native multiprotein complexes is a central theme in functional genomics. The development of the tandem affinity purification (TAP) tag has enabled an efficient and large-scale purification of native protein complexes. However, the TAP tag features a size of 21 kDa and requires time consuming cleavage. By combining a tandem Strep-tag II with a FLAG-tag we were able to reduce the size of the TAP (SF-TAP) tag to 4.6 kDa. Both moieties have a medium affinity and avidity to their immobilised binding partners. This allows the elution of SF-tagged proteins under native conditions using desthiobiotin in the first step and the FLAG octapeptide in the second step. The SF-TAP protocol represents an efficient, fast and straightforward purification of protein complexes from mammalian cells within 2.5 h. The power of this novel method is demonstrated by the purification of Raf associated protein complexes from HEK293 cells and subsequent analysis of their protein interaction network by dissection of interaction patterns from the Raf binding partners MEK1 and 14-3-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号