首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reports have recently suggested that eosinophils have the potential to modulate allergen-dependent pulmonary immune responses. The studies presented expand these reports demonstrating in the mouse that eosinophils are required for the allergen-dependent Th2 pulmonary immune responses mediated by dendritic cells (DCs) and T lymphocytes. Specifically, the recruitment of peripheral eosinophils to the pulmonary lymphatic compartment(s) was required for the accumulation of myeloid DCs in draining lymph nodes and, in turn, Ag-specific T effector cell production. These effects on DCs and Ag-specific T cells did not require MHC class II expression on eosinophils, suggesting that these granulocytes have an accessory role as opposed to direct T cell stimulation. The data also showed that eosinophils uniquely suppress the DC-mediated production of Th17 and, to smaller degree, Th1 responses. The cumulative effect of these eosinophil-dependent immune mechanisms is to promote the Th2 polarization characteristic of the pulmonary microenvironment after allergen challenge.  相似文献   

2.
Although endocytosed proteins are commonly presented via the class II MHC pathway to stimulate CD4(+) T cells, professional APCs can also cross-present Ags, whereby these exogenous peptides can be complexed with class I MHC for cross-priming of CD8(+) T cells. Whereas the ability of dendritic cells (DCs) to cross-present Ags is well documented, it is not known whether other APCs may also play a role, or what is the relative contribution of cross-priming to the induction of acquired immunity after DNA immunization. In this study, we compared immune responses generated after gene gun vaccination of mice with DNA vaccine plasmids driven by the conventional CMV promoter, the DC-specific CD11c promoter, or the keratinocyte-specific K14 promoter. The CD11c promoter achieved equivalent expression in CD11c(+) DCs in draining lymph nodes over time, as did a conventional CMV-driven plasmid. However, immunization with DC-restricted DNA vaccines failed to generate protective humoral or cellular immunity to model Ags influenza hemagglutinin and OVA, despite the ability of CD11c(+) cells isolated from lymph nodes to stimulate proliferation of Ag-specific T cells directly ex vivo. In contrast, keratinocyte-restricted vaccines elicited comparable T and B cell activity as conventional CMV promoter-driven vaccines, indicating that cross-priming plays a major role in the generation of immune responses after gene gun immunization. Furthermore, parallel studies in B cell-deficient mu-MT mice demonstrated that B lymphocytes, in addition to DCs, mediate cross-priming of Ag-specific T cells. Collectively, these data indicate that broad expression of the immunogen is required for optimal induction of protective acquired immunity.  相似文献   

3.
Psychological stress affects the pathophysiology of infectious, inflammatory, and autoimmune diseases. However, the mechanisms by which stress could modulate immune responses in vivo are poorly understood. In this study, we report that application of a psychological stress before immunization exerts an adjuvant effect on dendritic cell (DC), resulting in increased primary and memory Ag-specific T cell immune responses. Acute stress dramatically enhanced the skin delayed-type hypersensitivity reaction to haptens, which is mediated by CD8(+) CTLs. This effect was due to increased migration of skin DCs, resulting in augmented CD8(+) T cell priming in draining lymph nodes and enhanced recruitment of CD8(+) T cell effectors in the skin upon challenge. This adjuvant effect of stress was mediated by norepinephrine (NE), but not corticosteroids, as demonstrated by normalization of the skin delayed-type hypersensitivity reaction and DC migratory properties following selective depletion of NE. These results suggest that release of NE by sympathetic nerve termini during a psychological stress exerts an adjuvant effect on DC by promoting enhanced migration to lymph nodes, resulting in increased Ag-specific T cell responses. Our findings may open new ways in the treatment of inflammatory diseases, e.g., psoriasis, allergic contact dermatitis, and atopic dermatitis.  相似文献   

4.
The contribution of CD4+ T cells to dendritic cell (DC) activation and to the induction of CD8+ T cell responses in vivo was investigated using a model of antitumor immune responses. Immunization with peptide-loaded MHC class II-deficient (MHC class II-/-) DC induced the activation of Ag-specific CD8+ T cells and their accumulation in the lymph nodes and spleens of immunized mice. The accumulation induced by MHC class II-/- DC immunization was lower than the accumulation observed after immunization with MHC class II+/+ DC. Similarly, immunization with peptide-loaded, MHC class II-/- DC induced some degree of protection against tumor challenge, but this protection was lower than the protection achieved after immunization with MHC class II+/+ DC. Incubation with a membrane-associated form of CD40 ligand resulted in the up-regulation of costimulatory molecules on MHC class II-/- DC and fully rescued their ability to induce antitumor immunity. We conclude that CD4+ T cells play a critical role in the generation of antitumor immune responses through their capacity to induce the activation of DC via CD40/CD40 ligand interaction, and thus maximize CD8+ T cell responses.  相似文献   

5.
Induction and maintenance of Ag-specific tolerance are pivotal for immune homeostasis, prevention of autoimmune disorders, and the goal of transplantation. Recent studies suggest that certain cytokines, notably IL-10 and TGF-beta, may play a role in down-regulating immune functions. To further examine the role of cytokines in Ag-specific hyporesponsiveness, murine CD4+ T cells were exposed ex vivo to alloantigen-bearing stimulators in the presence of exogenous IL-10 and/or TGF-beta. Primary but not secondary alloantigen proliferative responses were inhibited by IL-10 alone. However, the combined addition of IL-10 + TGF-beta markedly induced alloantigen hyporesponsiveness in both primary and secondary MLR cultures. Alloantigen-specific hyporesponsiveness was observed also under conditions in which nominal Ag responses were intact. In adoptive transfer experiments, IL-10 + TGF-beta-treated CD4+ T cells, but not T cells treated with either cytokine alone, were markedly impaired in inducing graft-vs-host disease alloresponses to MHC class II disparate recipients. These data provide the first formal evidence that IL-10 and TGF-beta have at least an additive effect in inducing alloantigen-specific tolerance, and that in vitro cytokines can be exploited to suppress CD4+ T cell-mediated Ag-specific responses in vivo.  相似文献   

6.
Circadian clocks regulate many important aspects of physiology, and their disturbance leads to various medical conditions. Circadian variations have been found in immune system variables, including daily rhythms in circulating WBC numbers and serum concentration of cytokines. However, control of immune functional responses by the circadian clock has remained relatively unexplored. In this study, we show that mouse lymph nodes exhibit rhythmic clock gene expression. T cells from lymph nodes collected over 24 h show a circadian variation in proliferation after stimulation via the TCR, which is blunted in Clock gene mutant mice. The tyrosine kinase ZAP70, which is just downstream of the TCR in the T cell activation pathway and crucial for T cell function, exhibits rhythmic protein expression. Lastly, mice immunized with OVA peptide-loaded dendritic cells in the day show a stronger specific T cell response than mice immunized at night. These data reveal circadian control of the Ag-specific immune response and a novel regulatory mode of T cell proliferation, and may provide clues for more efficient vaccination strategies.  相似文献   

7.
The cytokines secreted by pathogen-activated human dendritic cells (DC) are strongly regulated in vitro by histamine, a major component of mast cell granules, ultimately modulating the capacity of the DC to polarize naive T cells. Because DC and mast cells are located in close proximity in peripheral compartments, we hypothesized that mast cell products would influence the maturation of DC and hence the Th balance of an immune response in vivo. In this study, we show that specific mast cell degranulation stimuli, given s.c. in mice with Ag and adjuvant, produce effector T cells that proliferate to Ag but secrete dramatically reduced levels of IFN-gamma and increased amounts of IL-4 compared with control T cells primed in the absence of a mast cell stimulus. Immunization with Ag and adjuvant in the presence of a degranulation stimulus also resulted in the accumulation of DC in the draining lymph nodes that had reduced capacity to induce Ag-specific Th1 cells, in comparison with DC from mice lacking a degranulation stimulus. Therefore, by acting upon DC at sites of inflammation, mast cells play a critical role in determining the polarity of Ag-specific T cell responses in vivo.  相似文献   

8.
Plasmacytoid dendritic cells (pDC) are capable of producing high levels of type I IFNs upon viral stimulation, and play a central role in modulating innate and adaptive immunity against viral infections. Whereas many studies have assessed myeloid dendritic cells (mDC) in the induction of antitumor immune responses, the role of pDC in antitumor immunity has not been addressed. Moreover, the interaction of pDC with other dendritic cell subsets has not been evaluated. In this study, we analyzed the capacity of pDC in stimulating an Ag-specific T cell response. Immunization of mice with Ag-pulsed, activated pDC significantly augmented Ag-specific CD8(+) CTL responses, and protected mice from a subsequent tumor challenge. Immunization with a mixture of activated pDC plus mDC resulted in increased levels of Ag-specific CD8(+) T cells and an enhanced antitumor response compared with immunization with either dendritic cell subset alone. Synergy between pDC and mDC in their ability to activate T cells was dependent on MHC I expression by mDC, but not pDC, suggesting that pDC enhanced the ability of mDC to present Ag to T cells. Our results demonstrate that pDC and mDC can interact synergistically to induce an Ag-specific antitumor immune response in vivo.  相似文献   

9.
Foxp3+ regulatory T cells (Tregs) play a pivotal role in the maintenance of peripheral T cell tolerance and are thought to interact with dendritic cells (DC) in secondary lymphoid organs. We analyzed here the in vivo requirements for selective expansion of Ag-specific Treg vs CD4+CD25- effector T cells and engagement of Ag-specific Treg-DC interactions in secondary lymphoid organs. Using i.v. Ag delivery in the absence of inflammation, we found that CD4+CD25+Foxp3+ Tregs undergo vigorous expansion and accumulate whereas naive CD4+CD25-Foxp3- T cells undergo abortive activation. Quantifying directly the interactions between Tregs and CD11c+ DC, we found that Tregs establish cognate contacts with endogenous CD11c+ DC in spleen and lymph nodes at an early time point preceding their expansion. Importantly, we observed that as few as 10(3) Tregs selectively expanded by i.v. Ag injection are able to suppress B and T cell immune responses in mouse recipients challenged with the Ag. Our results demonstrate that Tregs are selectively mobilized by Ag recognition in the absence of inflammatory signals, and can induce thereafter potent tolerance to defined Ag targets.  相似文献   

10.
Indirect IL-4 pathway in type 1 immunity.   总被引:4,自引:0,他引:4  
Recall Ag-specific IL-4 was detected in the spleen and in the blood, but not in lymph nodes of mice in which polarized type 1 immunity was induced. This IL-4 was not produced by T cells, but soluble factors secreted by the recall Ag-activated T cells, including IL-3, triggered cells of the innate immune system, primarily mast cells, to secrete IL-4. This notion has profound implications for immunodiagnostics: the detection of apparently recall Ag-specific IL-4 does not necessarily reflect the presence of Th2 or Th0 memory T cells with long-term cytokine commitment as is of interest for assessing adoptive immunity. We found that in vivo the indirect IL-4 pathway did not suffice to trigger IgE isotype switching, but promoted IgG1 production and inhibited type 1 T cell differentiation. Therefore, the indirect IL-4 pathway can explain partial type 2 immune response phenotypes in vivo in face of unipolar Th1 T cell immunity. The representation of mast cells in different tissues may explain why immune responses in certain organs are more type 2 biased. Therefore, the indirect pathway of IL-4 production represents a novel type of interaction between the innate and the adoptive immune system that can contribute to the outcome of host defense and immune pathology.  相似文献   

11.
Severe Acute Respiratory Syndrome caused substantial morbidity and mortality during the 2002–2003 epidemic. Many of the features of the human disease are duplicated in BALB/c mice infected with a mouse-adapted version of the virus (MA15), which develop respiratory disease with high morbidity and mortality. Here, we show that severe disease is correlated with slow kinetics of virus clearance and delayed activation and transit of respiratory dendritic cells (rDC) to the draining lymph nodes (DLN) with a consequent deficient virus-specific T cell response. All of these defects are corrected when mice are treated with liposomes containing clodronate, which deplete alveolar macrophages (AM). Inhibitory AMs are believed to prevent the development of immune responses to environmental antigens and allergic responses by interacting with lung dendritic cells and T cells. The inhibitory effects of AM can also be nullified if mice or AMs are pretreated with poly I:C, which directly activate AMs and rDCs through toll-like receptors 3 (TLR3). Further, adoptive transfer of activated but not resting bone marrow–derived dendritic cells (BMDC) protect mice from lethal MA15 infection. These results may be relevant for SARS in humans, which is also characterized by prolonged virus persistence and delayed development of a SARS-CoV-specific immune response in individuals with severe disease.  相似文献   

12.
IFN-gamma is considered to be a Th1 cytokine with immunomodulatory effects on a variety of immune cells. In this study, we determined whether dendritic cell (DC) function was aberrant in IFN-gamma knockout (GKO) mice. The results demonstrated that IFN-gamma deficiency did not interfere with bone marrow-derived DC development and maturation in vitro. However, functional analysis showed that bone marrow-derived DC from GKO mice had altered cytokine secretion, allostimulatory and Ag presentation capacity, chemokine receptor expression, and in vitro chemotaxis. LPS induced the recruitment of DC from different organs into the spleen; epicutaneously sensitized DC with hapten (FITC) accumulated in the draining lymph nodes and CD11c(+) DC levels in the draining lymph nodes from autoantigen (interphotoreceptor retinoid-binding protein) immunized mice were enhanced in GKO mice as compared with wild-type mice. After treatment of GKO mice with i.p. IFN-gamma injection restored IFN-gamma levels in vivo, DC migration decreased in response to LPS or FITC. IFN-gamma altered the adaptive immune responses in vivo, since T cell priming and IL-2 production were increased in interphotoreceptor retinoid-binding protein-immunized GKO mice. Furthermore, in IFN-gamma-treated GKO mice, experimental autoimmune uveitis score enhancement and T cell activation were eliminated. Taken together, IFN-gamma appears to play a negative regulatory role on in vivo DC function, resulting in suppression of Ag-specific T cell priming.  相似文献   

13.
Foxp3(+)CD25(+)CD4(+) regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-beta- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen. We find that CD8(+) DEC-205/CD205(+) DCs, but not the major fraction of CD8(-) DC inhibitory receptor-2 (DCIR2)(+) DCs, induce functional Foxp3(+) Treg from Foxp3(-) precursors in the presence of low doses of Ag but without added TGF-beta. CD8(+)CD205(+) DCs preferentially express TGF-beta, and the induction of Treg by these DCs in vitro is blocked by neutralizing Ab to TGF-beta. In contrast, CD8(-)DCIR2(+) DCs better induce Foxp3(+) Treg when exogenous TGF-beta is supplied. In vivo, CD8(+)CD205(+) DCs likewise preferentially induce Treg from adoptively transferred, Ag-specific DO11.10 RAG(-/-) Foxp3(-)CD4(+) T cells, whereas the CD8(-)DCIR2(+) DCs better stimulate natural Foxp3(+) Treg. These results indicate that a subset of DCs in spleen, a systemic lymphoid organ, is specialized to differentiate peripheral Foxp3(+) Treg, in part through the endogenous formation of TGF-beta. Targeting of Ag to these DCs might be useful for inducing Ag-specific Foxp3(+) Treg for treatment of autoimmune diseases, transplant rejection, and allergy.  相似文献   

14.
Phosphatidylserine regulates the maturation of human dendritic cells   总被引:2,自引:0,他引:2  
Phosphatidylserine (PS), which is exposed on the surface of apoptotic cells, has been implicated in immune regulation. However, the effects of PS on the maturation and function of dendritic cells (DCs), which play a central role in both immune activation and regulation, have not been described. Large unilamellar liposomes containing PS or phosphatidylcholine were used to model the plasma membrane phospholipid composition of apoptotic and live cells, respectively. PS liposomes inhibited the up-regulation of HLA-ABC, HLA-DR, CD80, CD86, CD40, and CD83, as well as the production of IL-12p70 by human DCs in response to LPS. PS did not affect DC viability directly but predisposed DCs to apoptosis in response to LPS. DCs exposed to PS had diminished capacity to stimulate allogeneic T cell proliferation and to activate IFN-gamma-producing CD4(+) T cells. Exogenous IL-12 restored IFN-gamma production by CD4(+) T cells. Furthermore, activated CTLs proliferated poorly to cognate Ag presented by DCs exposed to PS. Our findings suggest that PS exposure provides a sufficient signal to inhibit DC maturation and to modulate adaptive immune responses.  相似文献   

15.
Apoptotic cells induce immunosuppression through unknown mechanisms. To identify the underlying molecular mediators, we examined how apoptotic cells induce immunoregulation by dendritic cells (DC). We found that administration of DC exposed to apoptotic cells (DC(ap)) strongly inhibited the expansion of lymphocytes in draining lymph nodes in vivo and the subsequent Ag-specific activation of these lymphocytes ex vivo. Unexpectedly, DC(ap) supported T cell activation to a similar extent as normal DC in vitro, leading to proliferation and IL-2 production, except that DC(ap) did not support T cell production of IFN-gamma. Surprisingly, when DC(ap) were cocultured with normal DC, they completely lost their ability to support T cell activation, an effect reversed by anti-IFN-gamma or inhibitors of inducible NO synthase (iNOS). As expected, exposure to apoptotic cells rendered DC(ap) capable of producing much more NO in response to exogenous IFN-gamma than normal DC. Furthermore, DC(ap) from iNOS(-/-) or IFN-gammaR1(-/-) mice were not inhibitory in vitro or in vivo. Therefore, the IFN-gamma-induced production of NO by apoptotic cell-sensitized DC plays a key role in apoptotic cell-mediated immunosuppression.  相似文献   

16.
Blockade of IDO inhibits nasal tolerance induction   总被引:1,自引:0,他引:1  
The amino acid tryptophan is essential for the proliferation and survival of cells. Modulation of tryptophan metabolism has been described as an important regulatory mechanism for the control of immune responses. The enzyme IDO degrades the indole moiety of tryptophan, not only depleting tryptophan but also producing immunomodulatory metabolites called kynurenines, which have apoptosis-inducing capabilities. In this study, we show that IDO is more highly expressed in nonplasmacytoid dendritic cells of the nose draining lymph nodes (LNs), which form a unique environment to induce tolerance to inhaled Ags, when compared with other peripheral LNs. Upon blockade of IDO during intranasal OVA administration, Ag-specific immune tolerance was abrogated. Analysis of Ag-specific T cells in the LNs revealed that inhibition of IDO resulted in enhanced survival at 48 h after antigenic stimulation, although this result was not mediated through alterations in apoptosis or cell proliferation. Furthermore, no differences were found in CD4(+) T cells expressing FoxP3. Our data suggest that the level of IDO expression in dendritic cells, present in nose draining LNs, allows for the generation of a sufficient number of regulatory T cells to control and balance effector T cells in such a way that immune tolerance is induced, whereas upon IDO blockade, effector T cells will outnumber regulatory T cells, leading to immunity.  相似文献   

17.
TGF-beta 1 is critical for differentiation of epithelial-associated dendritic Langerhans cells (LC). In accordance with the characteristics of in vivo LC, we show that LC obtained from human monocytes in vitro in the presence of TGF-beta 1 1) express almost exclusively intracellular class II Ags, low CD80, and no CD83 and CD86 Ags and 2) down-regulate TNF-RI (p55) and do not produce IL-10 after stimulation, in contrast to dermal dendritic cells and monocyte-derived dendritic cells. Surprisingly, while LC exhibit E-cadherin down-regulation upon exposure to TNF-alpha and IL-1, TGF-beta 1 prevents the final LC maturation in response to TNF-alpha, IL-1, and LPS with respect to Class II CD80, CD86, and CD83 Ag expression, loss of FITC-dextran uptake, production of IL-12, and Ag presentation. In sharp contrast, CD40 ligand cognate signal induces full maturation of LC and is not inhibited by TGF-beta 1. The presence of emigrated immature LCs in human reactive skin-draining lymph nodes provides in vivo evidence that LC migration and final maturation may be differentially regulated. Therefore, due to the effects of TGF-beta 1, inflammatory stimuli may not be sufficient to induce full maturation of LC, thus avoiding potentially harmful immune responses. We conclude that TGF-beta 1 appears to be responsible for both the acquisition of LC phenotype, cytokine production pattern, and prevention of noncognate maturation.  相似文献   

18.
Similarly to other blood-feeding arthropods, ticks have evolved immunosuppressive mechanisms enabling them to overcome the host immune system. Although the immunomodulatory effect of tick saliva on several cell populations of the immune system has been extensively studied, little is known about its impact on dendritic cells (DCs). We have examined the effect of Ixodes ricinus tick saliva on DC function in vitro and in vivo. Exposure of DCs to tick saliva in vitro resulted in impaired maturation, upon CD40 or TLR9, TLR3 and TLR7 ligation, as well as reduced Ag presentation capacity. Administration of tick saliva in vivo significantly inhibited maturation and early migration of DCs from inflamed skin to draining lymph nodes, and decreased the capacity of lymph node DCs to present soluble Ag to specific T cells. Moreover, saliva-exposed DCs failed to induce efficient Th1 and Th17 polarization and promoted development of Th2 responses. Our data reveal a complex inhibitory effect exerted by tick saliva on DC function. Given the role of DCs as the key instigators of adaptive immune responses, alteration of their function might represent a major mechanism of tick-mediated immune evasion.  相似文献   

19.
20.
The T cell costimulatory molecule ICOS regulates Th2 effector function in allergic airway disease. Recently, several studies with ICOS(-/-) mice have also demonstrated a role for ICOS in Th2 differentiation. To determine the effects of ICOS on the early immune response, we investigated augmenting ICOS costimulation in a Th2-mediated immune response to Schistosoma mansoni Ags. We found that augmenting ICOS costimulation with B7RP-1-Fc increased the accumulation of T and B cells in the draining lymph nodes postimmunization. Interestingly, the increased numbers were due in part to increased migration of undivided Ag-specific TCR transgenic T cells and surprisingly B cells, as well as non-TCR transgenic T cells. B7RP-1-Fc also increased the levels of the chemokines CCL21 and CXCL13 in the draining lymph node, suggesting ICOS costimulation contributes to migration by direct or indirect effects on dendritic cells, stromal cells and high endothelial venules. Further, the effects of B7RP-1-Fc were not dependent on immunization. Our data support a model in which ICOS costimulation augments the pool of lymphocytes in the draining lymph nodes, leading to an increase in the frequency of potentially reactive T and B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号