首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late summer cyanobacterial blooms in the Baltic Sea contain Anabaena sp. together with Nodularia spumigena and Aphanizomenon flos-aquae. Although Anabaena is common especially in the Gulf of Finland, very little is known about its genetic diversity. Here we undertook a molecular phylogenetic study of 68 Anabaena strains isolated from the brackish Gulf of Finland. We sequenced the 16S rRNA genes from 54 planktonic and 14 benthic Anabaena strains, and rbcL and rpoC1 genes from a subset of these strains. Phylogenetic trees showed that Anabaena strains, from both planktonic and benthic habitats, were genetically diverse. Although the Anabaena strains were morphologically diverse, in our study only one genetically valid species was found to exist in the plankton. Evolutionary distances between benthic Anabaena strains were greater than between planktonic strains, suggesting that benthic habitats allow for the maintenance of greater genetic diversity than planktonic habitats. A number of novel lineages containing only sequences obtained in this study were compiled in the phylogenetical analyses. Thus, it seemed that novel lineages of the genus Anabaena may be present in the Baltic Sea. Our results demonstrate that the Baltic Sea Anabaena strains show surprisingly high genetic diversity.  相似文献   

2.
The seasonal dynamics of ciliate abundance has been studied in Lake Krivoye (the White Sea coast). A high species diversity of ciliates and their maximal biomass in the plankton are observed in the early spring in spite of low water temperatures (5–7°C). In spring, infusoria comprise 90% of the zooplankton biomass; i.e., infusoria as primary consumers are the main consumers of algal and microzooplankton production and the major carriers of energy to the next trophic level. During this period, a significant portion of planktonic infusoria biomass is constituted by the species containing zoochlorella. The high biomass of symbiotic algae (25% of the total biomass of planktonic algae) in a spring cilioplankton testifies to the important role that algosymbionts play in the primary production in some parts of the year.  相似文献   

3.
Despite the growing awareness of the ecological importance of epibiont-host associations, detailed inventories for planktonic hosts are rare. Here, we provide an updated checklist of the peritrich and suctorian epibiont ciliates (Ciliophora) on the cladocerans (Crustacea: Cladocera). Thirty-nine species of peritrich ciliates (of which 34 are assigned to species) and three species of suctorian ciliates are found to be epibionts on the Cladocera. Fifty-eight cladoceran taxa are known to be hosts of the ciliate epibionts, 33 of these hosts (57%) are planktonic. Seven taxa were determined to the level of genus. Complete species designations were geographically biased (38 of 51 species) towards European sites, suggesting poor taxonomic knowledge beyond Europe. Also, the recently discovered continental endemism of cladoceran hosts could indicate that associated ciliates are more diverse than previously appreciated.  相似文献   

4.
Biomass of ciliates, bacteria and mesozooplankton, as well asbiomass estimates of phytoplankton from chlorophyll a values,were studied in the mixed layer of the northern Baltic Sea proper,between February and December 1998. Production of phytoplanktonand bacteria was measured, and production of ciliates and mesozooplanktonwas estimated. The phytoplankton spring bloom in late Marchwas dominated by diatoms and dinoflagellates. Ciliates had abiomass peak shortly after the spring bloom, while mesozooplanktonpeaked in July. Thus, the predation pressure on ciliates waslow in spring, and ciliates were major predators, potentiallyconsuming up to 15% of the primary production. In summer, therewas a shift from larger to smaller ciliates coinciding witha shift from larger to smaller primary producers, an increasein bacterial production, and also an increase in mesozooplanktonabundance, mainly copepods. Elevated mesozooplankton predationand selective removal of larger ciliate species and/or a shiftto smaller prey size presumably caused these changes. The potentialcarbon consumption from ciliates and mesozooplankton was highestin summer and autumn, reaching 55 and 40% of the primary productionin summer and autumn, respectively. Ciliates consumed twiceas much as mesozooplankton, thus acting as important regenerators.  相似文献   

5.
Eutrophication of the Baltic Sea has become a serious concern in recent decades. To provide a potential means for quality assessments of coastal waters in this area, we collected a data set of 49 embayments in the Gulf of Finland, and explored the relationship between surface sediment diatom assemblages and 15 environmental variables, with special emphasis on nutrients. Total dissolved nitrogen, total phosphorus, depth, and salinity all accounted for significant and independent fractions of variation in the diatom data and explained 34% of the total variation. There were clear changes in diatom assemblage structures along the nutrient gradients. Although these changes were gradual, we could identify a number of taxa that were more abundant in a particular nutrient environment. These taxa could be used as potential indicators of the quality of coastal waters in the Baltic Sea. Diatom assemblages that were least affected by nutrient enrichment included a variety of benthic species and a relatively high species richness. Small planktonic taxa such as Cyclotella atomus Hustedt, Cyclotella meneghiniana Kützing and Thalassiosira pseudonana Hasle and Heimdal were good indicators of highly elevated nutrient concentrations (>600 lg·L?1 total dissolved nitrogen and 60 lg·L?1 total phosphorus) together with low species richness. The first appearance of these small planktonic taxa in regular monitoring could be used as an early warning sign for deteriorating water quality. Diatoms could be applied to water quality classification and monitoring purposes in the coastal waters of the Baltic Sea area using techniques such as weighted‐averaging regression and calibration.  相似文献   

6.
Fifty specimens each of bream Abramis brama and roach Rutilus rutilus were examined for metazoan parasite fauna and trichodinid ciliates; 25 specimens of each species were collected from the Kiel Canal, a man-made waterway, and a nearby freshwater lake, the Dieksee. This is the first detailed parasitological examination of A. brama and R. rutilus at these locations: 30 parasite species were found, comprising 4 protozoans, 4 myxozoans, 5 digeneans, 3 monogeneans, 2 cestodes, 6 nematodes, 2 acanthocephalans, 3 crustaceans and 1 hirudinean. The crustacean Caligus lacustris occurred in both habitats while 2 other crustacean species, 2 acanthocephalans and 1 hirudinean were recorded exclusively for the lake habitat. Larval as well as adult stages of the different parasite species were found, indicating that both fish species act as intermediate and final hosts in both habitats. The Kiel Canal (total of 17 parasite species) showed a lower parasite species richness for A. brama and R. rutilus (14 and 10 parasite species, respectively) than the lake (25 parasite species). A. brama had a higher parasite richness (22 species) than R. rutilus (16 species) in the lake habitat. Most parasites collected were of freshwater origin. Consequently, the observed infection pattern of both fish species in the waterway is mainly influenced by the limited salinity tolerance of freshwater parasites, which are negatively affected even by a salinity of 2.3 to 4.5. In the central Kiel Canal, neither fish species was infected with marine parasites of low host specifity. These parasites are either limited by the low salinity at this sampling site (<4.5 to 6.0) or they cannot enter the canal due to the environmental conditions prevailing in this artificial brackish water habitat. Thus, the canal may comprise a natural barrier preventing the distribution of North Sea parasites into the Baltic Sea. However, the brackish water Baltic Sea nematodes Paracuaria adunca and Cosmocephalus obvelatus were found in R. rutilus from the canal, demonstrating the ability of some parasite species to invade and extend their range of distribution through this man-made shipping route from the Baltic to the North Sea.  相似文献   

7.
Autofluorescence of marine planktonic Oligotrichina and other ciliates   总被引:4,自引:3,他引:1  
Planktonic ciliates, principally from the suborders Oligotrichina and Tintinnina, were examined by epifluorescence microscopy. This allowed (1) to check if isolated symbiotic plastids demonstrated by TEM in some species could keep and show an important autofluorescence, (2) to count and identify the species presenting this characteristic, and (3) to determine their proportion compared with the other strictly heterotrophic planktonic ciliates. An average of 40.6% of the Oligotrichina species, collected during the fall and winter, diplayed a strong autofluorescence. This indicated chlorophyll contents, in a good state of activity, which most often masked the digestive vacuoles shown by TEM. It seems that the maintenance of plastids, or of symbiotic algae, is common in this sub-order. These autofluorescent ciliates are probably all mixotrophic. We suggest to call them ‘plastidic ciliates’, and to consider their role in marine primary production. Discussion deals with the origin and the role of autofluorescent pigments in the Oligotrichina, compared with the other planktonic ciliates. The interest and the limits of the methods employed up to now, or to be used in this field, are analysed. Finally the evolutionary and ecological significance of such a development of symbiosis among planktonic ciliates is discussed.  相似文献   

8.
This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F ST) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.  相似文献   

9.
Marine invasions are of increasing concern for biodiversity conservation worldwide. Gelatinous macrozooplankton contain members, which have become globally invasive, for example the ctenophore Mnemiopsis leidyi or the hydromedusae Blackfordia virginica. B. virginica is characterised by a large salinity tolerance, with a brackish-water habitat preference, and by a metagenic life history strategy with an alternation between sexually reproducing planktonic medusae and asexually reproducing benthic polyps to complete the life cycle. In this study we analysed 8 years of ichthyoplankton survey data (2010–2017) from the Kiel Canal and 14 ichthyoplankton summer surveys in the central Baltic Sea (2008–2017). We report the first presence of B. virginica in northern Europe, namely from the southwestern Baltic Sea and the Kiel Canal. In the Kiel Canal, B. virginica was first sporadically sighted in 2014 and 2015 and has developed persistent populations since summer 2016. Changes in size-frequency distributions during summer 2016 indicate active recruitment in the Kiel Canal at salinities between 7 and 13 and temperatures?>?14 °C. Close vicinity to and direct connection with the southwestern Baltic Sea, where B. virginica was observed during 2017, indicate that the Baltic Sea and other brackish-water habitats of Northern Europe are at risk for colonisation of this non-indigenous species. Our results highlight that monitoring activities should consider gelatinous macrozooplankton for standard assessments to allow for the detection of non-indigenous species at an early stage of their colonisation.  相似文献   

10.
Population genetic structure of sedentary marine species is expected to be shaped mainly by the dispersal ability of their larvae. Long-lived planktonic larvae can connect populations through migration and gene flow, whereas species with nondispersive benthic or direct-developing larvae are expected to have genetically differentiated populations. Poecilogonous species producing different larval types are ideal when studying the effect of developmental mode on population genetic structure and connectivity. In the spionid polychaete Pygospio elegans, different larval types have been observed between, and sometimes also within, populations. We used microsatellite markers to study population structure of European P. elegans from the Baltic Sea (BS) and North Sea (NS). We found that populations with planktonic larvae had higher genetic diversity than did populations with benthic larvae. However, this pattern may not be related to developmental mode, since in P. elegans, developmental mode may be associated with geography. Benthic larvae were more commonly seen in the brackish BS and planktonic larvae were predominant in the NS, although both larval types also are found from both areas. Significant isolation-by-distance (IBD) was found overall and within regions. Most of the pair-wise F(ST) comparisons among populations were significant, although some geographically close populations with planktonic larvae were found to be genetically similar. However, these results, together with the pattern of IBD, autocorrelation within populations, as well as high estimated local recruitment, suggest that dispersal is limited in populations with planktonic larvae as well as in those with benthic larvae. The decrease in salinity between the NS and BS causes a barrier to gene flow in many marine species. In P. elegans, low, but significant, differentiation was detected between the NS and BS (3.34% in AMOVA), but no clear transition zone was observed, indicating that larvae are not hampered by the change in salinity.  相似文献   

11.
Seasonal and vertical distribution of tintinnids, non-loricate ciliates and micrometazoa were studied in Kaštela Bay (central Adriatic Sea) throughout 1995. The species composition of tintinnids and copepods were studied as well. This is the first estimation of non-loricate ciliate biomass in the coastal area of the central Adriatic. Non-loricate ciliates were quantitatively the best represented ciliated protozoa, whereas nauplii were the most numerous micrometazoan organisms. Temperature affected the distribution of most micrometazoan components of the zooplankton and that of non-loricate ciliates. The temperature-dependent presence of individual size categories of non-loricate ciliates was also established. Apart from the interaction between microzooplankton groups, the influence of biotic factors, such as phytoplankton, bacteria, non-pigmented nanoflagellates (NNF) and mesozooplankton, was also discussed. The abundance of ciliates was controlled by both food supply (phytoplankton and NNF) and micrometazoan grazing. The results point to very complex trophic relationships within the planktonic community, suggesting that microzooplankton could be an important link between the microbial food web and higher trophic levels. Received in revised form: 8 November 2000 Electronic Publication  相似文献   

12.
The planktonic community of 20 melt ponds on the McMurdo Ice Shelf was investigated to determine taxa abundance and diversity and the controlling environmental variables. Grazing rates were measured using fluorescent beads to examine trophic interactions between ciliates, bacteria and phytoplankton. The melt ponds contained a surprisingly varied planktonic community with relatively high abundance compared with Antarctic continental lakes. There was a clear distinction between small, productive ponds dominated by bactivorous small ciliates, hymenostomes and heterotrophic cryptophytes and the larger, less productive ponds where these taxa were less abundant. The benthic mats of cyanobacteria and diatoms were potentially a source of food for some ciliate species but the majority were bacterivores. The lack of large herbivorous ciliates, the heterotrophic capabilities of cryptophytes and the broad ecological tolerances contributed to a planktonic community dominated by cryptophytes.  相似文献   

13.
Environmental gradients have emerged as important barriers to structuring populations and species distributions. We set out to test whether the strong salinity gradient from the marine North Sea to the brackish Baltic Sea in northern Europe represents an ecological and genetic break, and to identify life history traits that correlate with the strength of this break. We accumulated mitochondrial cytochrome oxidase subunit 1 sequence data, and data on the distribution, salinity tolerance, and life history for 28 species belonging to the Cnidaria, Crustacea, Echinodermata, Mollusca, Polychaeta, and Gastrotricha. We included seven non‐native species covering a broad range of times since introduction, in order to gain insight into the pace of adaptation and differentiation. We calculated measures of genetic diversity and differentiation across the environmental gradient, coalescent times, and migration rates between North and Baltic Sea populations, and analyzed correlations between genetic and life history data. The majority of investigated species is either genetically differentiated and/or adapted to the lower salinity conditions of the Baltic Sea. Species exhibiting population structure have a range of patterns of genetic diversity in comparison with the North Sea, from lower in the Baltic Sea to higher in the Baltic Sea, or equally diverse in North and Baltic Sea. Two of the non‐native species showed signs of genetic differentiation, their times since introduction to the Baltic Sea being about 80 and >700 years, respectively. Our results indicate that the transition from North Sea to Baltic Sea represents a genetic and ecological break: The diversity of genetic patterns points toward independent trajectories in the Baltic compared with the North Sea, and ecological differences with regard to salinity tolerance are common. The North Sea–Baltic Sea region provides a unique setting to study evolutionary adaptation during colonization processes at different stages by jointly considering native and non‐native species.  相似文献   

14.
于2011年春季(5月)和秋季(11月)在东海陆架区进行浮游纤毛虫丰度和生物量的调查.春季和秋季纤毛虫的平均丰度分别为(614±861)和(934±809) ind·L-1,平均生物量分别为(1.70±3.91)和(0.93±0.99) μg C·L-1.表层纤毛虫丰度和生物量的高值区春季主要分布在近岸及远岸海区,秋季主要分布在远岸海区.春季纤毛虫的丰度和生物量在水体上层较高;秋季纤毛虫主要分布在水体上层,有时在水体底层也会出现丰度和生物量的高值.春季无壳纤毛虫群落的粒级较大,秋季较小.砂壳纤毛虫占纤毛虫丰度的平均比例春季和秋季分别为(26.9±34.3)%和(44.9±25.2)%.两个季节共鉴定出砂壳纤毛虫27属52种,春季丰度较大的种为原始筒壳虫、橄榄领细壳虫及筒状拟铃虫,秋季丰度较大的种为原始筒壳虫、小领细壳虫及矮小拟铃虫.纤毛虫丰度与温度、叶绿素a(Chl a)浓度呈显著正相关.砂壳纤毛虫丰度与盐度呈显著负相关,群落结构变化与温度显著相关.  相似文献   

15.
Analysing the results of various authors recent studies in the pelagic region of the Baltic revealed that protozoan biomass is in the same range or even higher than metazooplankton biomass. The dominant groups of planktonic protozoans are heterotrophic pico- and nanoflagellates (various taxonomic groups), large heterotrophic flagellates (mainly dinoflagellates) and ciliates. Regularly the spring bloom of phytoplankton is accompanied by a maximum of protozoan biomass which declines in early summer as a result of intensive grazing pressure by metazooplankton and changing food conditions. The analysis of results from different stations indicated that biomasses of protozoans increase with an increasing degree of eutrophication. Several trophic levels within the microbial web should be added to the traditional view on the pelagic food web of the Baltic. Our knowledge regarding the quantitative aspect of the microbial matter flux of the Baltic is very limited up to now and complex ecological (and taxonomical) studies using standardized methods including all protozoan components are necessary. Protozoans (various trophic groups and levels), besides bacteria, should be viewed as the metabolically most active heterotrophic component in the pelagic region of the Baltic, their activity should increase with an increasing degree of eutrophication.  相似文献   

16.
Foreign Organelle Retention by Ciliates   总被引:2,自引:0,他引:2  
SYNOPSIS. Intact algal chloroplasts were found by electron microscopy in the peripheral cytoplasm of 2 ecologically important species of planktonic marine ciliates. The exact origin of the chloroplast is uncertain and the periods of their retention by the protozoa is unknown. The 2 ciliate species may function partially or fully as primary producers. In other ciliates algal eye-spots are retained and may actually be utilized. Ecologic and evolutionary implications of the observations are discussed.  相似文献   

17.
Populations of the dinoflagellate Dinophysis norvegica in the Baltic Sea and in the adjacent North Sea are infected by the endoparasite Amoebophrya sp. The high diversity recently unveiled within the genus Amoebophrya brings uncertainty about their identities. We applied molecular biology techniques--18S rDNA sequencing and fluorescent in situ hybridization (FISH)--to compare this host-parasite system from both environments. The North Sea Amoebophrya sp. 18S rDNA sequence was 89% identical to the previously described Baltic Sea Amoebophrya sp. sequence, suggesting they are different species. In spite of that, a phylogenetical analysis placed the North Sea parasite sequence in a well-supported cluster with other Amoebophrya sp. sequences. The D. norvegica 18S rDNA sequences from both environments were 100% identical, indicating that the hosts have not evolved independently. A DNA probe designed for the Baltic Sea Amoebophrya sp. 18S rRNA was used in FISH assays on infected D. norvegica populations from both environments. The probe stained all infected cells from the Baltic sample, whereas none from the North Sea were stained. The results indicate that D. norvegica is released from one parasite when entering the Baltic Sea, and become less infected by an alternative parasite species.  相似文献   

18.
We found all developmental stages of the midge Telmatogeton japonicus (Chironomidae) on offshore windmills near the major Swedish seaport Kalmar in the southern Baltic Sea. This might be the first record of an insect species really inhabiting the offshore areas of the Baltic Sea. A thorough analysis of previous findings of the species, its history in Europe and its ecology indicates that T. japonicus quite likely is an alien species in Europe introduced from the Pacific Ocean. Shipping is probably the vector, as all records in the Baltic Sea and several from the Eastern Atlantic Sea are near major seaports. Our analysis further suggests that T. japonicus might be both advantageous and disadvantageous to native species in the Baltic Sea. T. japonicus should be kept under observation within monitoring programmes as it might expand its distribution as a result of the construction of new windmills in the Baltic Sea and elsewhere in European marine and brackish water habitats.  相似文献   

19.
20.
Marginal populations are often isolated and under extreme selection pressures resulting in anomalous genetics. Consequently, ecosystems that are geographically and ecologically marginal might have a large share of genetically atypical populations, in need of particular concern in management of these ecosystems. To test this prediction, we analysed genetic data from 29 species inhabiting the low saline Baltic Sea, a geographically and ecologically marginal ecosystem. On average Baltic populations had lost genetic diversity compared to Atlantic populations: a pattern unrelated to dispersal capacity, generation time of species and taxonomic group of organism, but strongly related to type of genetic marker (mitochondrial DNA loci had lost c. 50% diversity, and nuclear loci 10%). Analyses of genetic isolation by geographic distance revealed clinal patterns of differentiation between Baltic and Atlantic regions. For a majority of species, clines were sigmoid with a sharp slope around the Baltic Sea entrance, indicating impeded gene flows between Baltic and Atlantic populations. Some species showed signs of allele frequencies being perturbed at the edge of their distribution inside the Baltic Sea. Despite the short geological history of the Baltic Sea (8000 years), populations inhabiting the Baltic have evolved substantially different from Atlantic populations, probably as a consequence of isolation and bottlenecks, as well as selection on adaptive traits. In addition, the Baltic Sea also acts a refuge for unique evolutionary lineages. This marginal ecosystem is thus vulnerable but also exceedingly valuable, housing unique genes, genotypes and populations that constitute an important genetic resource for management and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号