首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Targeting multiple digestive proteases may be more effective in insect pest control than inhibition of a single enzyme class. We therefore explored possible interactions of three antimetabolic protease inhibitors fed to cowpea bruchids in artificial diets, using a recombinant soybean cysteine protease inhibitor scN, an aspartic protease inhibitor pepstatin A, and soybean Kunitz trypsin inhibitor KI. scN and pepstatin, inhibiting major digestive cysteine and aspartic proteases, respectively, significantly prolonged the developmental time of cowpea bruchids individually. When combined, the anti-insect effect was synergistic, i.e., the toxicity of the mixture was markedly greater than that of scN or pepstatin alone. KI alone did not impact insect development even at relatively high concentrations, but its anti-insect properties became apparent when acting jointly with scN or scN plus pepstatin. Incubating KI with bruchid midgut extract showed that it was partially degraded. This instability may explain its lack of anti-insect activity. However, this proteolytic degradation was inhibited by scN and/or pepstatin. Protection of KI from proteolysis in the insect digestive tract thus could be the basis for the synergistic effect. These observations support the concept that cowpea bruchid gut proteases play a dual role; digesting protein for nutrient needs and protecting insects by inactivating dietary proteins that may otherwise be toxic. Our results also suggest that transgenic resistance strategies that involve multigene products are likely to have enhanced efficacy and durability.  相似文献   

3.
Abstract 1 The soybean cysteine protease inhibitor soyacystatin N (scN) and Griffonia simplicifolia lectin II (rGSII) have defense functions against the coleopteran cowpea bruchid beetle Callosobruchus maculatus. However, the ability of the insect to activate scN‐insensitive digestive proteases and the relatively low potency of rGSII have hindered their practical application in plant protection. 2 Recent research suggests that defense proteins may achieve increased toxicity and durability when used in combination. Based on the structures of several natural toxin molecules, we hypothesized that covalently linked scN and rGSII could exhibit greater anti‐insect efficacy than the mixture containing individual proteins. 3 To test this hypothesis, a recombinant scN‐rGSII fusion protein that retained both protease inhibitor and lectin functions was constructed. 4 When fed to cowpea bruchid, this new protein showed a synergistic delay in insect development, whereas a mixture of the separate proteins only showed an additive effect. 5 Our results suggest that tethering digestive protease inhibitors to gut epithelium‐interacting lectins could give plant protection superior to strategies based on single genes or mixtures of single gene products.  相似文献   

4.
5.
6.
7.
8.
Proteases produced during the culture of Spodoptera frugiperda Sf-9 cells infected with Autographa californica nuclear polyhedrosis virus (AcNPV) were assayed with various protease inhibitors. This inhibitory analysis revealed that: (1) carboxyl and cysteine proteases were predominantly produced by the insect cells infected with recombinant AcNPV, the gene of which encoded a variant of green fluorescent protein in a portion of the polyhedrin gene of the baculovirus, and (2) the protease activity was almost completely blocked by pepstatin A (carboxyl protease inhibitor) and E64 (cysteine protease inhibitor) in an additive manner in the presence of EDTA. Utilizing the additive property of the inhibitors, the inhibition-based protease assay discriminated between the two protease activities and elucidated the sequential behavior of the carboxyl and cysteine proteases produced in the virus-infected Sf-9 cell culture. The carboxyl protease(s) existed in the virus-infected cells all the time and their level in the medium continuously increased. Uninfected cells also contained a carboxyl protease activity, the level of which was similar to that of the virus-infected cells. At a certain time after virus infection, the cysteine protease activity was largely increased in the virus-infected cells and a significant amount of the protease(s) was released into the medium, due to the cell membranes losing their integrity. The behavior of intracellular and extracellular cysteine protease activities coincided with that of a recombinant protein whose expression was under the control of the viral polyhedrin promoter. Similar examinations with wt-AcNPV-infected and uninfected insect cells showed that the inhibition-based protease assay was useful for analyzing the carboxyl protease and cysteine protease activities emerging in the insect cell (Sf-9)/baculovirus expression system.  相似文献   

9.
10.
11.
Plants can accumulate, constitutively and/or after induction, a wide variety of defense compounds in their tissues that confer resistance to herbivorous insects. The naturally occurring plant resistance gene pool can serve as an arsenal in pest management via transgenic approaches. As insect‐plant interaction research rapidly advances, it has gradually become clear that the effects of plant defense compounds are determined not only by their toxicity toward target sites, but also by how insects respond to the challenge. Insect digestive tracts are not passive targets of plant defense, but often can adapt to dietary challenge and successfully deal with various plant toxins and anti‐metabolites. This adaptive response has posed an obstacle to biotechnology‐based pest control approaches, which underscores the importance of understanding insect adaptive mechanisms. Molecular studies on the impact of protease inhibitors on insect digestion have contributed significantly to our understanding of insect adaptation to plant defense. This review will focus on exposing how the insect responds to protease inhibitors by both qualitative and quantitative remodeling of their digestive proteases using the cowpea bruchid–soybean cysteine protease inhibitor N system.  相似文献   

12.
13.
14.
15.
16.
Genetically modified (GM) legumes expressing the α-amylase inhibitor 1 (αAI-1) from Phaseolus vulgaris L. or cysteine protease inhibitors are resistant to several bruchid pests (Coleoptera: Chrysomelidae). In addition, the combination of plant resistance factors together with hymenopteran parasitoids can substantially increase the bruchid control provided by the resistance alone. If the strategy of combining a bruchid-resistant GM legume and biological control is to be effective, the insecticidal trait must not adversely affect bruchid antagonists. The environmental risk assessment of such GM legumes includes the characterization of the targeted enzymes in the beneficial species and the assessment of the in vitro susceptibility to the resistance factor. The digestive physiology of bruchid parasitoids remain relatively unknown, and their susceptibility to αAI-1 has never been investigated. We have detected α-amylase and serine protease activities in all five bruchid parasitoid species tested. Thus, the deployment of GM legumes expressing cysteine protease inhibitors to control bruchids should be compatible with the use of parasitoids. In vitro inhibition studies showed that sensitivity of α-amylase activity to αAI-1 in the parasitoids was comparable to that in the target species. Direct feeding assays revealed that harmful effects of α-amylase inhibitors on bruchid parasitoids cannot be discounted and need further evaluation.  相似文献   

17.
18.
19.
Mycobacterium tuberculosis-induced IFN-gamma protein and mRNA expression have been shown to be reduced in tuberculosis patients, compared with healthy tuberculin reactors. To determine whether this decrease was associated with reduced activity of the IFN-gamma promoter, we first studied binding of nuclear proteins to the radiolabeled proximal IFN-gamma promoter (-71 to -40 bp), using EMSAs with nuclear extracts of freshly isolated peripheral blood T cells. Nuclear extracts of T cells from most tuberculosis patients showed markedly reduced expression of proteins that bind to the proximal IFN-gamma promoter, compared with findings in nuclear extracts of T cells from healthy tuberculin reactors. These DNA-binding complexes contained CREB proteins, based on competitive EMSAs, supershift assays, and Western blotting with an anti-CREB Ab. Transient transfection of PBLs with a luciferase reporter construct under the control of the IFN-gamma promoter revealed reduced IFN-gamma promoter activity in tuberculosis patients. Transient transfection of Jurkat cells with a dominant-negative CREB repressor plasmid reduced IFN-gamma promoter activity. These data suggest that reduced expression of CREB nuclear proteins in tuberculosis patients results in decreased IFN-gamma promoter activity and reduced IFN-gamma production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号