首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the mechanisms of blood coagulation zymogen activation demonstrate that exosites (sites on the activating complex distinct from the protease active site) play key roles in macromolecular substrate recognition. We investigated the importance of exosite interactions in recognition of factor IX by the protease factor XIa. Factor XIa cleavage of the tripeptide substrate S2366 was inhibited by the active site inhibitors p-aminobenzamidine (Ki 28 +/- 2 microM) and aprotinin (Ki 1.13 +/- 0.07 microM) in a classical competitive manner, indicating that substrate and inhibitor binding to the active site was mutually exclusive. In contrast, inhibition of factor XIa cleavage of S2366 by factor IX (Ki 224 +/- 32 nM) was characterized by hyperbolic mixed-type inhibition, indicating that factor IX binds to free and S2366-bound factor XIa at exosites. Consistent with this premise, inhibition of factor XIa activation of factor IX by aprotinin (Ki 0.89 +/- 0.52 microM) was non-competitive, whereas inhibition by active site-inhibited factor IXa beta was competitive (Ki 0.33 +/- 0.05 microM). S2366 cleavage by isolated factor XIa catalytic domain was competitively inhibited by p-aminobenzamidine (Ki 38 +/- 14 microM) but was not inhibited by factor IX, consistent with loss of factor IX-binding exosites on the non-catalytic factor XI heavy chain. The results support a model in which factor IX binds initially to exosites on the factor XIa heavy chain, followed by interaction at the active site with subsequent bond cleavage, and support a growing body of evidence that exosite interactions are critical determinants of substrate affinity and specificity in blood coagulation reactions.  相似文献   

2.
Coagulation factor VIIa (FVIIa) belongs to a family of proteases being part of the stepwise, self-amplifying blood coagulation cascade. To investigate the impact of the mutation Met(298{156})Lys in FVIIa, we replaced the Gly(283{140})-Met(298{156}) loop with the corresponding loop of factor Xa. The resulting variant exhibited increased intrinsic activity, concurrent with maturation of the active site, a less accessible N-terminus, and, interestingly, an altered macromolecular substrate specificity reflected in an increased ability to cleave factor IX (FIX) and a decreased rate of FX activation compared to that of wild-type FVIIa. In complex with tissue factor, activation of FIX, but not of FX, returned to normal. Deconvolution of the loop graft in order to identify important side chain substitutions resulted in the mutant Val(158{21})Asp/Leu(287{144})Thr/Ala(294{152})Ser/Glu(296{154}) Ile/Met(298{156})Lys-FVIIa with almost the same activity and specificity profile. We conclude that a lysine residue in position 298{156} of FVIIa requires a hydrophilic environment to be fully accommodated. This position appears critical for substrate specificity among the proteases of the blood coagulation cascade due to its prominent position in the macromolecular exosite and possibly via its interaction with the corresponding position in the substrate (i.e. FIX or FX).  相似文献   

3.
Human kallikrein-related peptidases (KLKs) are (chymo)-trypsin-like serine proteinases that are expressed in a variety of tissues such as prostate, ovary, breast, testis, brain, and skin. Although their physiological functions have been only partly elucidated, many of the KLKs appear to be useful prognostic cancer markers, showing distinct correlations between their expression levels and different stages of cancer. Recent advances in the purification of 'new type' recombinant KLKs allowed solution of the crystal structures of KLK4, KLK5, KLK6, and KLK7. Along with these data, enzyme kinetic studies and extended substrate specificity profiling have led to an understanding of the non-prime-side substrate preferences of KLK4, 5, 6, and 7. The shape and polarity of the specificity pockets S1-S4 explain well their substrate preferences. KLK4, 5, and 6 exhibit trypsin-like specificity, with a strong preference for Arg at the P1 position of substrates. In contrast, KLK7 displays a unique chymotrypsin-like specificity for Tyr, which is also preferred at P2. All four KLKs show little specificity for P3 residues and have a tendency to accept hydrophobic residues at P4. Interestingly, for KLK4, 5, and 7 extended charged surface regions were observed that most likely serve as exosites for physiological substrates.  相似文献   

4.
The complex of factor VIIa (FVIIa) with tissue factor (TF) triggers coagulation by recognizing its macromolecular substrate factors IX (FIX) and X (FX) predominantly through extended exosite interactions. In addition, TF mediates unique cell-signaling properties in cancer, angiogenesis, and inflammation that involve proteolytic cleavage of protease-activated receptor 2 (PAR2). PAR2 is cleaved by FVIIa in the binary TF·FVIIa complex and by FXa in the ternary TF·FVIIa·FXa complex, but physiological roles of these signaling complexes are incompletely understood. In a screen of FVIIa protease domain mutants, three variants (Q40A, Q143N, and T151S) activated macromolecular coagulation substrates and supported signaling of the ternary TF·FVIIa-Xa complex normally but were severely impaired in binary TF·FVIIa·PAR2 signaling. The residues identified were located in the model-predicted S2′ pocket of FVIIa, and complementary PAR2 P2′ Leu-38 replacements demonstrated that the P2′ side chain was indeed crucial for PAR2 cleavage by TF·FVIIa. In addition, PAR2 was activated more efficiently by FVIIa T99Y, consistent with further contributions from the S2 subsite. The P2 residue preference of FVIIa and FXa predicted additional PAR2 mutants that were efficiently activated by TF·FVIIa but resistant to cleavage by the alternative PAR2 activator FXa. Thus, contrary to the paradigm of exosite-assisted cleavage of PAR1 by thrombin, the cofactor-associated protease FVIIa recognizes PAR2 predominantly by catalytic cleft interactions. Furthermore, the delineated molecular details of this substrate interaction enabled protein engineering of protease-selective PAR2 receptors that will aid further studies to dissect the roles of TF signaling complexes in vivo.  相似文献   

5.
Autocleavage assay and peptide-based cleavage assay were used to study the substrate specificity of 3CL protease from the severe acute respiratory syndrome coronavirus. It was found that the recognition between the enzyme and its substrates involved many positions in the substrate, at least including residues from P4 to P2'. The deletion of either P4 or P2' residue in the substrate would decrease its cleavage efficiency dramatically. In contrast to the previous suggestion that only small residues in substrate could be accommodated to the S 1' subsite, we have found that bulky residues such as Tyr and Trp were also acceptable. In addition, based on both peptide-based assay and autocleavage assay, Ile at the PI' position could not be hydrolyzed, but the mutant L27A could hydrolyze the Ile peptide fragment. It suggested that there was a stereo hindrance between the S 1' subsite and the side chain of Ile in the substrate. All 20 amino acids except Pro could be the residue at the P2' position in the substrate, but the cleavage efficiencies were clearly different. The specificity information of the enzyme is helpful for potent anti-virus inhibitor design and useful for other coronavirus studies.  相似文献   

6.
Determination of the substrate specificity of site-specific proteases helps define their physiological roles. We developed a yeast-based system for defining the minimal substrate specificity of site-specific proteases, within the context of a protein. Using this system, we characterized the P4-P1 substrate specificity of the nematode apoptotic caspase CED-3. Apart from an absolute requirement for aspartate at the P1 position, CED-3 is a relatively promiscuous caspase capable of cleaving substrates bearing many amino acids at P4-P2 sites.  相似文献   

7.
Factor Xa is a central protease in the coagulation cascade and the target for many anticoagulant compounds currently under development. The preferences of the enzyme for substrates incorporating residues N-terminal to the cleavage site (P1, P2, etc.) have been elucidated, but little is known of its preferences for residues C-terminal to the cleavage site (P1', P2', etc.). The preferences of bovine factor Xa for substrate residues in the P1', P2' and P3' positions were mapped using fluorescence-quenched substrates. Bovine factor Xa, often used as a model for factor Xa, was most selective for the P2' position, less selective at the P1' position and almost completely non-selective at the P3' position. It appears that while the prime side subsites of factor Xa impose some selectivity towards substrates, the influence of these sites on factor Xa cleavage specificity is relatively low in comparison to related enzymes such as thrombin.  相似文献   

8.
The substrate specificity of Escherichia coli peptide deformylase was investigated by measuring the efficiency of the enzyme to cleave formyl- peptides of the general formula Fo-Xaa-Yaa-NH2, where Xaa represents a set of 27 natural and unusual amino acids and Yaa corresponds to a set of 19 natural amino acids. Substrates with bulky hydrophobic side-chains at the P1' position were the most efficiently cleaved, with catalytic efficiencies greater by two to five orders of magnitude than those associated with polar or charged amino acid side-chains. Among hydrophobic side-chains, linear alkyl groups were preferred at the P1' position, as compared to aryl-alkyl side-chains. Interestingly, in the linear alkyl substituent series, with the exception of norleucine, deformylase exhibits a preference for the substrate containing Met in the P1' position. Next, the influence in catalysis of the second side-chain was studied after synthesis of 20 compounds of the formula Fo-Nle-Yaa-NH2. Their deformylation rates varied within a range of only one order of magnitude. A 3D model of the interaction of PDF with an inhibitor was then constructed and revealed indeed the occurrence of a deep and hydrophobic S1' pocket as well as the absence of a true S2' pocket. These analyses pointed out a set of possible interactions between deformylase and its substrates, which could be the ground driving substrate specificity. The validity of this enzyme:substrate docking was further probed with the help of a set of site-directed variants of the enzyme. From this, the importance of residues at the bottom of the S1' pocket (Ile128 and Leu125) as well as the hydrogen bond network that the main chain of the substrate makes with the enzyme were revealed. Based on the numerous homologies that deformylase displays with thermolysin and metzincins, a mechanism of enzyme:substrate recognition and hydrolysis could finally be proposed. Specific features of PDF with respect to other members of the enzymes with motif HEXXH are discussed.  相似文献   

9.
The previous notion that the amino acid side chain at position 104 of subtilisins is involved in the binding of the side chain at position P4 of the substrate has been investigated. The amino acid residue Val104 in subtilisin 309 has been replaced by Ala, Arg, Asp, Phe, Ser, Trp and Tyr by site-directed mutagenesis. It is shown that the P4 specificity of this enzyme is not determined solely by the amino acid residue occupying position 104, as the enzyme exhibits a marked preference for aromatic groups in P4, regardless of the nature of the position-104 residue. With hydrophilic amino acid residues at this position, no involvement is seen in binding of either hydrophobic or hydrophilic amino acid residues at position P4 of the substrates. The substrate with Asp in P4 is an exception, as the preference for this substrate is increased dramatically by introduction of an arginine residue at position 104 in the enzyme, presumably due to a substrate-induced conformational change. However, when position 104 is occupied by hydrophobic residues, it is highly involved in binding of hydrophobic amino acid residues, either by increasing the hydrophobicity of S4 or by determining the size of the pocket. The results suggest that the amino acid residue at position 104 is mobile such that it is positioned in the S4 binding site only when it can interact favourably with the substrate's side chain at position P4.  相似文献   

10.
Coagulation factor VIIa (FVIIa) requires tissue factor (TF) to attain full catalytic competency and to initiate blood coagulation. In this study, the mechanism by which TF allosterically activates FVIIa is investigated by a structural dynamics approach that combines molecular dynamics (MD) simulations and hydrogen/deuterium exchange (HX) mass spectrometry on free and TF-bound FVIIa. The differences in conformational dynamics from MD simulations are shown to be confined to regions of FVIIa observed to undergo structural stabilization as judged by HX experiments, especially implicating activation loop 3 (residues 365-374{216-225}) of the so-called activation domain and the 170-loop (residues 313-322{170A-175}) succeeding the TF-binding helix. The latter finding is corroborated by experiments demonstrating rapid deglycosylation of Asn322 in free FVIIa by PNGase F but almost complete protection in the presence of TF or an active-site inhibitor. Based on MD simulations, a key switch of the TF-induced structural changes is identified as the interacting pair Leu305{163} and Phe374{225} in FVIIa, whose mutual conformations are guided by the presence of TF and observed to be closely linked to the structural stability of activation loop 3. Altogether, our findings strongly support an allosteric activation mechanism initiated by the stabilization of the Leu305{163}/Phe374{225} pair, which, in turn, stabilizes activation loop 3 and the S(1) and S(3) substrate pockets, the activation pocket, and N-terminal insertion.  相似文献   

11.
Two closely related kallikrein-like proteinases having little activity toward the standard synthetic amide substrates of tissue kallikreins were isolated from the rat submandibular gland. They were found to be the protein products of the rKlk2 (tonin) and the rKlk9 genes by amino acid sequence analysis (nomenclature of the genes and proteins of the kallikrein family is according to the proposal of the discussion panel from the participants of the KININ '91 meeting held Sept. 8-14, 1991, in Munich, Germany). These two proteinases of similar structure also had very similar physicochemical properties. They differed from other kallikrein-related proteinases in having high pHi values of 6.20 (rK2) and 6.85 (rK9). Kallikrein rK2 was purified as a single peptide chain, whereas rK9 appeared as a two-chain protein after reduction. Their enzymatic properties were also very similar and differed significantly from those of other rat kallikrein-related proteinases. Unlike the five other kallikrein-related proteinases we have purified so far, kallikrein rK9 was not inhibited by aprotinin. rK9 also differed from rK2 by its tissue localization. The prostate gland contained only rK9 where it was the major kallikrein-like component. The amino acids preferentially accommodated by the proteinase S3 to S2' subsites were identified using synthetic amide and protein substrates. Unlike other kallikrein-related proteinases, rK2 had a prevalent chymotrypsin-like specificity, whereas rK9 had both chymotrypsin-like and trypsin-like properties. Both rK2 and rK9 preferred a prolyl residue in position P2 of the substrate and did not accommodate bulky and hydrophobic residues at that position, as did most of the other kallikrein-related proteinases. This P2-proline-directed specificity is necessary for processing the precursors of several biologically active peptides. Subsites accommodating residues COOH-terminal to the scissile bond were also important in determining the overall substrate specificity of these proteinases. rK2 and rK9 both showed a preference for hydrophobic residues in P2'. Other subsites upstream of the S3 subsite were found to intervene in substrate binding and hydrolysis. The restricted specificity of rK2 and rK9 is consistent with the presence of an extended substrate binding site, and hence with a processing enzyme function. Their P1 specificities enabled both proteinases to release angiotensin II from angiotensinogen and from angiotensinogen I, but rK9 was at least 100 times less active than rK2 on both substrates. The substrate specificities of rK2 and rK9 were correlated with key amino acids defining their substrate binding site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Persson E  Nielsen LS  Olsen OH 《Biochemistry》2001,40(11):3251-3256
The enzyme factor VIIa (FVIIa) triggers the blood coagulation cascade upon association with tissue factor (TF). The TF-induced allosteric enhancement of FVIIa's activity contributes to the procoagulant activity of the complex, and Met-306 in the serine protease domain of FVIIa participates in this event. We have characterized FVIIa variants mutated in position 306 with respect to their ability to be stimulated by TF. The amidolytic activity of FVIIa mutants with Ser, Thr, and Asn in position 306 was stimulated 9-, 12-, and 7-fold, respectively, by soluble TF as compared to 22-fold for wild-type FVIIa. In contrast, the activity of Met306Asp-FVIIa only increased about 2-fold and that of Met306Asp/Asp309Ser-FVIIa increased about 1.5-fold. Modeling suggests that Asp in position 306 prevents the TF-induced stimulation of FVIIa by disrupting essential intermolecular hydrogen bonds. The ability of the FVIIa variants to catalyze factor X activation and the amidolytic activity were enhanced to a similar extent by soluble TF. This indicates that factor X does not promote its own activation through interactions with exosites on FVIIa made accessible upon FVIIa-TF assembly. Met306Asp-FVIIa binds soluble TF with a dissociation constant of 13 nM (about 3-fold higher than that of FVIIa), and, in sharp contrast to FVIIa, its binding kinetics are unaltered after inactivation with D-Phe-Phe-Arg chloromethyl ketone. We conclude that a single specific amino acid replacement, substitution of Asp for Met-306, virtually prevents the TF-induced allosteric changes which normally result in dramatically increased FVIIa activity and eliminates the effect of the active site inhibitor on TF affinity.  相似文献   

13.
Addlagatta A  Gay L  Matthews BW 《Biochemistry》2008,47(19):5303-5311
Aminopeptidase N from Escherichia coli is a M1 class aminopeptidase with the active-site region related to that of thermolysin. The enzyme has unusual specificity, cleaving adjacent to the large, nonpolar amino acids Phe and Tyr but also cleaving next to the polar residues Lys and Arg. To try to understand the structural basis for this pattern of hydrolysis, the structure of the enzyme was determined in complex with the amino acids L-arginine, L-lysine, L-phenylalanine, L-tryptophan, and L-tyrosine. These amino acids all bind with their backbone atoms close to the active-site zinc ion and their side chain occupying the S1 subsite. This subsite is in the form of a cylinder, about 10 A in cross-section and 12 A in length. The bottom of the cylinder includes the zinc ion and a number of polar side chains that make multiple hydrogen-bonding and other interactions with the alpha-amino group and the alpha-carboxylate of the bound amino acid. The walls of the S1 cylinder are hydrophobic and accommodate the nonpolar or largely nonpolar side chains of Phe and Tyr. The top of the cylinder is polar in character and includes bound water molecules. The epsilon-amino group of the bound lysine side chain and the guanidinium group of arginine both make multiple hydrogen bonds to this part of the S1 site. At the same time, the hydrocarbon part of the lysine and arginine side chains is accommodated within the nonpolar walls of the S1 cylinder. This combination of hydrophobic and hydrophilic binding surfaces explains the ability of ePepN to cleave Lys, Arg, Phe, and Tyr. Another favored substrate has Ala at the P1 position. The short, nonpolar side chain of this residue can clearly be bound within the hydrophobic part of the S1 cylinder, but the reason for its facile hydrolysis remains uncertain.  相似文献   

14.
Proteolytic processing of zymogen Factor VII to Factor VIIa (FVIIa) is necessary but not sufficient for maximal proteolytic activity, which requires an additional allosteric influence induced upon binding to its cofactor tissue factor (TF). A key conformational change affecting the zymogenicity of FVIIa involves a unique three-residue shift in the position of beta-strand B2 in their zymogen and protease forms. By selectively introducing new disulfide bonds, we locked the conformation of these strands into an active TF*FVIIa-like state. FVIIa mutants designated 136:160, 137:159, 138:160, and 139:157, reflecting the position of the new disulfide bond (chymotypsinogen numbering), were expressed and purified by TF affinity chromatography. Mass spectrometric analysis of tryptic peptides from the FVIIa mutants confirmed the new disulfide bond formation. Kinetic analysis of amidolytic activity revealed that all FVIIa variants alone had increased specific activity compared to wild type, the largest being for variants 136:160 and 138:160 with substrate S-2765, having 670- and 330-fold increases, respectively. Notably, FVIIa disulfide-locked variants no longer required TF as a cofactor for maximal activity in amidolytic assays. In the presence of soluble TF, activity was enhanced 20- and 12-fold for variants 136:160 and 138:160, respectively, compared to wild type. With relipidated TF, mutants 136:160 and 137:159 also had an approximate threefold increase in their V(max)/K(m) values for FX activation but no significant improvement in TF-dependent clotting assays. Thus, while large rate enhancements were obtained for amidolytic substrates binding at the active site, macro-molecular substrates that bind to FVIIa exosites entail more complex catalytic requirements.  相似文献   

15.
Factor VII requires the cleavage of an internal peptide bond and the association with tissue factor (TF) to attain its fully active factor VIIa (FVIIa) conformation. The former event alone leaves FVIIa in a zymogen-like state of relatively low specific activity. We have designed a number of FVIIa mutants with the aim of mimicking the effect of TF, that is, creating molecules with increased intrinsic (TF-independent) enzymatic activity. Based on a possible structural difference between free and TF-bound FVIIa (Pike, A. C. W., Brzozowski, A. M., Roberts, S. M., Olsen, O. H., and Persson, E. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 8925--8930), we focused on the helical region encompassing residues 307-312 and residues in its spatial vicinity. For instance, FVIIa contains Phe-374 and Leu-305, whereas a Phe/Tyr residue in the position corresponding to 374 in homologous coagulation serine proteases is accompanied by Val in the position corresponding to 305. This conceivably results in a unique orientation of this helix in FVIIa. Substitution of Val for Leu-305 in FVIIa resulted in a 3--4-fold increase in the intrinsic amidolytic and proteolytic activity as compared with wild-type FVIIa, whereas the activity in complex with soluble TF remained the same. In accordance with this, L305V-FVIIa exhibited an increased rate of inhibition as compared with wild-type FVIIa, both by d-Phe-Phe-Arg-chloromethyl ketone and antithrombin III in the presence of heparin. The increased FVIIa activity upon replacement of Leu-305 by Val may be mediated by a movement of the 307--312 helix into an orientation resembling that found in factors IXa and Xa and thrombin. The corresponding shortening of the side chain of residue 374 (Phe --> Pro) had a smaller effect (about 1.5-fold increase) on the intrinsic activity of FVIIa. Attempts to increase FVIIa activity by introducing single or multiple mutations at positions 306, 309, and 312 to stabilize the 307-312 helix failed.  相似文献   

16.
Agniswamy J  Fang B  Weber IT 《The FEBS journal》2007,274(18):4752-4765
Many protein substrates of caspases are cleaved at noncanonical sites in comparison to the recognition motifs reported for the three caspase subgroups. To provide insight into the specificity and aid in the design of drugs to control cell death, crystal structures of caspase-7 were determined in complexes with six peptide analogs (Ac-DMQD-Cho, Ac-DQMD-Cho, Ac-DNLD-Cho, Ac-IEPD-Cho, Ac-ESMD-Cho, Ac-WEHD-Cho) that span the major recognition motifs of the three subgroups. The crystal structures show that the S2 pocket of caspase-7 can accommodate diverse residues. Glu is not required at the P3 position because Ac-DMQD-Cho, Ac-DQMD-Cho and Ac-DNLD-Cho with varied P3 residues are almost as potent as the canonical Ac-DEVD-Cho. P4 Asp was present in the better inhibitors of caspase-7. However, the S4 pocket of executioner caspase-7 has alternate regions for binding of small branched aliphatic or polar residues similar to those of initiator caspase-8. The observed plasticity of the caspase subsites agrees very well with the reported cleavage of many proteins at noncanonical sites. The results imply that factors other than the P4-P1 sequence, such as exosites, contribute to the in vivo substrate specificity of caspases. The novel peptide binding site identified on the molecular surface of the current structures is suggested to be an exosite of caspase-7. These results should be considered in the design of selective small molecule inhibitors of this pharmacologically important protease.  相似文献   

17.
The Cucurbita maxima trypsin inhibitor CMTI-III molecule was used as a vehicle to design and synthesize a series of trypsin chromogenic substrates modified in position P1: Ac-Ala-Val-Abu-Pro-X-pNA, where X = Orn, Lys, Arg, Har, Arg(NO(2)), Cit, Hci, Phe(p-CN), Phe(p-NH(2)); pNA = p-nitroanilide. The most active compounds (as determined by specificity constant k(cat)/K(m)) were peptides with the Arg and Lys residues in the position discussed. Changes in the length and the decrease of the positive charge of the amino acid residue side chain in position P(1) resulted in the decrease or loss of the affinity towards bovine beta-trypsin. Among peptides containing amino acid residues with uncharged side chains in position P1, only one with p-cyano-l-Phe revealed activity. These results correspond well with trypsin inhibitory activity of CMTI-III analogues modified in the equivalent position, indicating the same type of interaction between position P1 of the substrate or inhibitor and S1 site specificity of trypsin.  相似文献   

18.
The aminopeptidase PepC is a cysteine peptidase isolated from lactic acid bacteria. Its structural and enzymatic properties closely resembles those of the bleomycin hydrolases, a group of cytoplasmic enzymes isolated from eukaryotes. Previous biochemical and structural data have shown that the C-terminal end of PepC partially occupies the active site cleft. In this work the substrate specificity of PepC was engineered by deletion of the four C-terminal residues. The mutant PepCDelta432-435 cleaved peptide substrates as an oligopeptidase while the aminopeptidase specificity was totally abolished. The substrate size dependency indicated that PepCDelta432-435 possesses an extended binding site able to accommodate four residues of the substrate on both sides of the cleaved bond. The activity of PepCDelta432-435 towards tryptic fragments of casein revealed a preference for peptides with hydrophobic amino acids at positions P2 and P3 and for Gly, Asn and Gln at position P1. PepCDelta432-435 was shown to be highly sensitive to the thiol peptidase inhibitors leupeptin or E64 which are inefficient towards the wild-type PepC. In conclusion, deletion of the four C-terminal residues in PepC produces a new enzyme with properties resembling those of an endopeptidase from the papain family.  相似文献   

19.
Thrombin is an allosteric protease controlled through exosites flanking the catalytic groove. Binding of a peptide derived from hirudin (Hir(52-65)) and/or of heparin to these opposing exosites alters catalysis. We have investigated the contribution of subsites S(2)' and S(3)' to this allosteric transition by comparing the hydrolysis of two sets of fluorescence-quenched substrates having all natural amino acids at positions P(2)' and P(3)'. Regardless of the amino acids, Hir(52-65) decreased, and heparin increased the k(cat)/K(m) value of hydrolysis by thrombin. Several lines of evidence have suggested that Glu(192) participates in this modulation. We have examined the role of Glu(192) by comparing the catalytic activity of thrombin and its E192Q mutant. Mutation substantially diminishes the selectivity of thrombin. The substrate with the "best" P(2)' residue was cleaved with a k(cat)/K(m) value only 49 times higher than the one having the "least favorable" P(2)' residue (versus 636-fold with thrombin). Mutant E192Q also lost the strong preference of thrombin for positively charged P(3)' residues and its strong aversion for negatively charged P(3)' residues. Furthermore, both Hir(52-65) and heparin increased the k(cat)/K(m) value of substrate hydrolysis. We conclude that Glu(192) is critical for the P(2)' and P(3)' specificities of thrombin and for the allostery mediated through exosite 1.  相似文献   

20.
Kinetic analysis and modeling studies of HIV-1 and HIV-2 proteinases were carried out using the oligopeptide substrate [formula: see text] and its analogs containing single amino acid substitutions in P3-P3' positions. The two proteinases acted similarly on the substrates except those having certain hydrophobic amino acids at P2, P1, P2', and P3' positions (Ala, Leu, Met, Phe). Various amino acids seemed to be acceptable at P3 and P3' positions, while the P2 and P2' positions seemed to be more restrictive. Polar uncharged residues resulted in relatively good binding at P3 and P2 positions, while at P2' and P3' positions they gave very high Km values, indicating substantial differences in the respective S and S' subsites of the enzyme. Lys prevented substrate hydrolysis at any of the P2-P2' positions. The large differences for subsite preference at P2 and P2' positions seem to be at least partially due to the different internal interactions of P2 residue with P1', and P2' residue with P1. As expected on the basis of amino acid frequency in the naturally occurring cleavage sites, hydrophobic residues at P1 position resulted in cleavable peptides, while polar and beta-branched amino acids prevented hydrolysis. On the other hand, changing the P1' Pro to other amino acids prevented substrate hydrolysis, even if the substituted amino acid had produced a good substrate in other oligopeptides representing naturally occurring cleavage sites. The results suggest that the subsite specificity of the HIV proteinases may strongly depend on the sequence context of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号