首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymatic peptide synthesis can be carried out efficiently in solid-to-solid reaction mixtures with 10% (w/w) water added to a mixture of substrates. The final reaction mass contains >/=80% (by weight) of product. This article deals with acid-base effects in such reaction mixtures and the consequences for the enzyme. In the Thermoase-catalyzed synthesis of Z-Asp-Phe-OMe, the reaction rate is strongly dependent on the amount of basic salts added to the system. The rate increases 20 times, as the KHCO(3) or K(2)CO(3) added is raised 2.25-fold from an amount equimolar to the Phe-OMe. HCL starting material. With further increases in KHCO(3) addition, the initial rate remains at the maximum, but with K(2)CO(3) it drops sharply. Addition of NaHCO(3) is less effective, but rates are faster if more water is used. With >1.5 equivalents of basic salt, the final yield of the reaction decreases. Similar effects are observed when thermolysin catalyzes the same reaction, or Z-Gln-Leu-NH(2) synthesis. These effects can be rationalized using a model estimating the pH of these systems, taking into account the possible formation of up to ten different solid phases.  相似文献   

2.
3.
We have studied a thermolysin-catalyzed solid-to-solid dipeptide synthesis using equimolar amounts of Z-Gln-OH and H-Leu-NH2 as model substrates. The high substrate concentrations make this an effective alternative to enzymatic peptide synthesis in organic solvents. Water content was varied in the range of 0 to 600 mL water per mol substrate and enzyme concentration in the range of 0.5 to 10 g/mol of substrates. High yields around 80% conversion and initial rates from 5 to 20 mmol s-1 kg-1 were achieved. The initial rate increases 10-fold on reducing the water content, to reach a pronounced optimum at 40 mL water per mol substrate. Below this, the rate falls to much lower values in a system with no added water, and to zero in a rigorously dried system. This behavior is discussed in terms of two factors: At higher water contents the system is mass transfer limited (as shown by varying enzyme content), and the diffusion distances required vary. At low water levels, effects reflect the stimulation of the enzymatic activity by water.  相似文献   

4.
The kinetics of the enzymatic synthesis of benzylpenicillin catalysed by penicillin amidase (EC 3.5.1.11) from Escherichia coli have been studied. Both free phenylacetic acid (PAA) and its activated derivative, phenylacetylglycine (PAG), were used in the synthesis as acylating agents for 6-aminopenicillanic acid (6-APA). The catalytic rate constants for synthesis carried out at pH 6.0 were 11.2 and 25.2 s−1, respectively, i.e. they are close and have high absolute values. The main feature of the enzymatic synthesis of benzylpenicillin from phenylacetylglycine, compared with the synthesis from phenylacetic acid, is the shape of the progress curve of antibiotic accumulation. In the former case, benzylpenicillin gradually accumulates until equilibrium is reached. Thus, if the reaction is carried out at the thermodynamically optimum pH of synthesis (low pH), penicillin can be obtained in high yield. In the case of phenylacetylglycine, the kinetic curves are more complex and are characterized by a clear-cut maximum. The presence of the maximum, its value and position on the time axis depend on reagent concentration and on the pH used. A kinetic scheme is proposed which describes well the experimental dependencies. The possibility of using activated acid derivatives in synthesis and the advantages of using computer calculations for process optimization are discussed.  相似文献   

5.
Protease inhibitors represent a major class of drugs, even though a large number of proteases remain unexplored. Consequently, a great interest lies in the identification of highly sensitive substrates useful for both the characterization and the validation of these enzyme targets and for the design of inhibitors as potential therapeutic agents through high-throughput screening (HTS). With this aim, a synthetic substrate library, in which the highly fluorescent (L)-pyrenylalanine residue (Pya) is efficiently quenched by its proximity with the p-nitro-(L)-phenylalanine (Nop) moiety, was designed. The cleavage between Pya and Nop leads to a highly fluorescent metabolite providing the required sensitivity. This library, characterized by a water-soluble primary sequence Ac-SGK-Pya-(X)n-Nop-GGK-NH2, X being a mixture of 10 natural amino acids (A, I, L, K, F, W, E, Q, T, P) and n varying from 0 to 3, was validated using enzymes belonging to the four main types of hydrolases: serine-, metallo-, cystein-, and aspartyl-proteases. The selectivity of substrates belonging to this library was evidenced by characterizing specific substrates for the isoenzymes NEP-1 and NEP-2. This library easily synthesized is of great interest for the identification and development of selective and specific substrates for still uncharacterized endoproteases.  相似文献   

6.
The concept of substrate mimetic strategy represents a new powerful method in the field of enzymatic peptide synthesis. This strategy takes advantage of the shift in the site-specific amino acid moiety from the acyl residue to the ester-leaving group of the carboxyl component enabling acylation of the enzyme by nonspecific acyl residues. As a result, peptide bond formation occurs independently of the primary specificity of proteases. Moreover, because of the coupling of nonspecific acyl residues, the newly formed peptide bond is not subject to secondary hydrolysis achieving irreversible peptide synthesis. Here, we report the combination of solid-phase peptide synthesis with substrate mimetic-mediated enzymatic peptide fragment condensations. First, the utility of the oxime resin strategy for the synthesis of peptide fragments in the form of substrate mimetics esterified as 4-guanidinophenyl-, phenyl- and mercaptopropionic acid esters was investigated. The study was completed by using the resulting N(alpha)-protected peptide esters as acyl donors in trypsin-, alpha-chymotrypsin- and V8 protease-catalyzed fragment condensations.  相似文献   

7.
The kinetics of the reaction of Boc-Xaa fluorophenyl esters (where Xaa = Ala, Val, Phe, Ser, Leu, Gly, Met, Pro, or Ile) with leucinamide was studied measuring changes in the fluorescence emission at 375 nm of the fluorophenyl chromophore accompanying the reaction. It was found that the experimental kinetic data couldn't be described by a simple scheme of the second order reaction. The measurements of the kinetic parameters of the reaction at various initial concentrations of reagents indicated that the reaction rate can be expressed as: v = kCNaCAEb, where k is the reaction rate constant, CN is the concentration of leucinamide, and LeuNH2, CAE is the concentration of fluorophenyl ester. The a and b reaction orders were close to 1/2 and 3/2 for Xaa = Ala, Val, Phe, Ser, or Leu, 1/2 and 1 for Gly, Met, or Pro, and 1 and 2 for Ile. The experimental equations for the reaction rate can theoretically be derived from a single scheme of chain reactions with various deactivation ways for active intermediates. The English version of the paper.  相似文献   

8.
The synthesis reaction of the peptide, N-Cbz-L-tryptophanyl-glycineamide, catalyzed by alpha-chymotrypsin was performed in a 20% water/80%, 1,4-butanediol mixture. The synthesis yield reached 90.9% at the end of the reaction and 72.3% after purification. The effects on the yield of both pH and the ratio between total initial concentrations of glycineamide and N-Cbz-L-tryptophan are examined. The high yield, specificity, simplicity and reproducibility of this method make it complementary of the chemical methods.  相似文献   

9.
Proteolysis of casein substrates includes demasking stage, the transition of masked bonds to the demasked stage, where peptide bonds become accessible to the enzyme attack. Therefore, proteolysis was regarded as a two-stage process with consequent demasking and hydrolysis stages. When demasking process is kinetically significant, the peptide bonds are hydrolysed with some lag. It was shown both by theoretical simulations and experimentally that the increase of amino nitrogen can be a non-monotonous function of the hydrolysis degree or proteolysis time. The non-monotonously dependence was found for chymotryptic proteolysis of β-casein, while for α-casein the monotonous dependence was obtained. This was treated as an indication of the prevalence of the hydrophobically induced masking effect for β-casein. For the proteolysis of β-casein by wild-type and engineered trypsins, the kinetic analysis allowed us to conclude that demasking stage was initiated by the splitting of the main peptide chain, which compact conformation was initially stabilized by the interaction of hydrophobic regions of peptide chain.  相似文献   

10.
Kinetics of batch-wise enzymatic cycling system (oxidoreductase-catalyzed reaction system involving enzyme-coupled cofactor regeneration) has been studied covering a broad range of the conserved total cofactor concentration, [C]0 (=NAD(P)+?+?NAD(P)H), based on reasonable several assumptions. It is composed of two elementary reactions, i.e. product synthesis reaction and cofactor regeneration reaction, both of which have been expressed by Michaelis–Menten type rate equations. A novel dimensionless variable, r, has been introduced, which is defined as the concentration of one of the two cofactor components, [X] (NADH+ or NADPH+), divided by [C]0, i.e. r .e[X]/[C]0. The following results have been obtained. (1) The fundamental equation of the batch-wise enzymatic cycling system has been transformed to a differential equation whose formula is: dr/dT?=?N(r)/D(r) (N(r) and D(r) are quadratic equations of r having different coefficients). (2) It has been elucidated that the batch-wise enzymatic cycling system has two phases, an early short transient phase followed by a long phase in quasi-steady state (QSS). (3) In the enzymatic cycling system, r converges to a definite level regardless of any initial value of r. (4) In QSS, the definite level of r nearly equals the singular solution, rsingular, of the differential equation. (5) The actual rate of the targeted product (chiral compound) formation can be calculated by Michaelis–Menten equation in which the cofactor concentration is [C]0×rsingular instead of [C]0. rsingular has been proposed to name “redistribution factor”. (6) It is recommended that the “unit” of the cofactor regeneration enzyme be 2–3 times more used than the “unit” of the synthesis enzyme and that [C]0 be 15–25 times more than the Km value. Four special cases relating to the batch-wise enzymatic cycling system have been discussed.  相似文献   

11.
12.
The peptide transport protein DtpT of Lactococcus lactis was purified and reconstituted into detergent-destabilized liposomes. The kinetics and substrate specificity of the transporter in the proteoliposomal system were determined, using Pro-[(14)C]Ala as a reporter peptide in the presence of various peptides or peptide mimetics. The DtpT protein appears to be specific for di- and tripeptides, with the highest affinities for peptides with at least one hydrophobic residue. The effect of the hydrophobicity, size, or charge of the amino acid was different for the amino- and carboxyl-terminal positions of dipeptides. Free amino acids, omega-amino fatty acid compounds, or peptides with more than three amino acid residues do not interact with DtpT. For high-affinity interaction with DtpT, the peptides need to have free amino and carboxyl termini, amino acids in the L configuration, and trans-peptide bonds. Comparison of the specificity of DtpT with that of the eukaryotic homologues PepT(1) and PepT(2) shows that the bacterial transporter is more restrictive in its substrate recognition.  相似文献   

13.
N-benzyloxycarbonyl-L-aspartic acid ethyl ester-D-alanine amide, a derivative of alitame, was synthesized from a eutectic mixture of the substrates N-benzyloxycarbonyl-L-aspartic acid diethyl ester and D-alanine amide using alpha-chymotrypsin. The hydrophilic solvents DMSO and MEA were found to be the best adjuvants for formation of a eutectic substrate mixture. A low eutectic temperature of 27 degrees C was obtained for the substrate mixture containing 9% DMSO, 18% MEA, and 12% water. Under these conditions a conversion yield of 70.3% (mol/mol) was obtained at 37 degrees C. The optimum molar ratio of the acyl acceptor D-alanine amide and the acyl donor N-benzyloxycarbonyl-L-aspartic acid diethyl ester was 1:1.  相似文献   

14.
Meinnel T  Patiny L  Ragusa S  Blanquet S 《Biochemistry》1999,38(14):4287-4295
Series of substrates derivatives of peptide deformylase were systematically synthesized and studied for their capacities to undergo hydrolysis. Data analysis indicated the requirement for a hydrophobic first side chain and for at least two main chain carbonyl groups in the substrate. For instance, Fo-Met-OCH3 and Fo-Nle-OCH3 were the minimal substrates of peptide deformylase obtained in this study, while positively charged Fo-Nle-ArgNH2 was the most efficient substrate (kcat/Km = 4.5 x 10(5) M-1.s-1). On the basis of this knowledge, 3-mercapto-2-benzylpropanoylglycine (thiorphan), a known inhibitor of thermolysin, could be predicted and further shown to inhibit the deformylation reaction. The inhibition by this compound was competitive and proved to depend on the hydrophobicity at the P1' position. Spectroscopic evidence that the sulfur group of thiorphan binds next to the active site metal ion on the enzyme could be obtained. Consequently, a small thiopseudopeptide derived from Fo-Nle-OCH3 was designed and synthesized. This compound behaved as a competitive inhibitor of peptide deformylase with KI = 52 +/- 5 microM. Introduction of a positive charge to this thiopeptide via addition of an arginine at P2' improved the inhibition constant up to 2.5 +/- 0.5 microM, a value 4 orders of magnitude smaller than that of the starting inhibitors. Evidence that this inhibitor, imino[(5-methoxy-5-oxo-4-[[2-(sulfanylmethyl)hexanoyl]amino]pentyl )am ino]methanamine, binds inside the active site cavity of peptide deformylase, while keeping intact the 3D fold of the protein, was provided by NMR. A fingerprint of the interaction of the inhibitor with the residues of the enzyme was obtained.  相似文献   

15.
Permeable resins cross-linked with long PEG chains were synthesized for use in solid-phase enzyme library assays. High molecular weight bis-amino-polyethylene glycol (PEG) 4000, 6000, 8000 were synthesized by a three-step reaction starting from PEG-bis-OH. Macromonomers were synthesized by partial or di-acryloylation of bis-amino-PEG derivatives. Bis/mono-acrylamido–PEG were copolymerized along with acrylamide by inverse suspension copolymerization to yield a less cross-linked resin (Type I, compounds 6–9 ). Furthermore, acryloyl–sarcosin ethyl ester was co-polymerized along with bis-acrylamido PEG to obtain more crosslinked capacity resin (Type II, compounds 13–19 ). N,N-Dimethylacrylamide was used as a co-monomer in some cases. The polymer was usually obtained in a well-defined beaded form and was easy to handle under both wet and dry conditions. The supports showed good mechanical properties and were characterized by studying the swelling properties, size distribution of beads, and by estimating the amino group capacity. Depending on the PEG chain length, the monomer composition and the degree of cross-linking the PEGA supports showed a high degree of swelling in a broad range of solvents, including water, dichloromethane, DMF, acetonitril, THF and toluene; no swelling was observed in diethyl ether. The PEGA resins (Type I ) with an amino acid group capacity between 0.07 and 1.0 mmol/g could be obtained by variation of the monomer composition in the polymerization mixture. Fluorescent quenched peptide libraries were synthesized on the new polymer using a multiple column library synthesizer and incubated with the matrix metalloproteinase MMP-9 after it had been activated by 4-aminophenyl mercuric acetate resulting in 67/83 kDa active enzyme. The bright beads were separated manually under a fluorescence microscope and sequenced to obtain peptide substrates for MMP-9. After treatment with ethylene diamine, high-loaded resins (Type II ) have been employed in continuous flow peptide synthesis to yield peptides in excellent yield and purity. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
During enzymatic kinetic synthesis of cephalexin, an activated phenylglycine derivative (phenylglycine amide or phenylglycine methyl ester) is coupled to the nucleus 7-aminodeacetoxycephalosporanic acid (7-ADCA). Simultaneously, hydrolysis of phenylglycine amide and hydrolysis of cephalexin take place. This results in a temporary high-product concentration that is subsequently consumed by the enzyme. To optimize productivity, it is necessary to develop models that predict the course of the reaction. Such models are known from literature but these are only applicable for a limited range of experimental conditions. In this article a model is presented that is valid for a wide range of substrate concentrations (0-490 mM for phenylglycine amide and 0-300 mM for 7-ADCA) and temperatures (273-298 K). The model was built in a systematic way with parameters that were, for an important part, calculated from independent experiments. With the constants used in the model not only the synthesis reaction but also phenylglycine amide hydrolysis and cephalexin hydrolysis could be described accurately. In contrast to the models described in literature, only a limited number (five) of constants was required to describe the reaction at a certain temperature. For the temperature dependency of the constants, the Arrhenius equation was applied, with the constants at 293 K as references. Again, independent experiments were used, which resulted in a model with high statistic reliability for the entire temperature range. Low temperatures were found beneficial for the process because more cephalexin and less phenylglycine is formed. The model was used to optimize the reaction conditions using criteria such as the yield on 7-ADCA or on activated phenylglycine. Depending on the weight of the criteria, either a high initial phenylglycine amide concentration (yield on 7-ADCA) or a high initial 7-ADCA concentration (yield on phenylglycine amide) is beneficial.  相似文献   

17.
L-ascorbyl acetate was synthesized through lipase-catalyzed esterification using Lipozyme TLIM and Novozym 435. Four solvents, including methanol, ethanol, acetonitrile, and acetone were investigated for the reaction, and acetone and acetonitrile were found to be suitable reaction media. The influences of several parameters such as water activity (a w), substrate molar ratio, enzyme loading, and reaction temperature on esterification of L-ascorbic acid were systematically and quantitatively analyzed. Through optimizing the reaction, lipase-catalyzed esterification of L-ascorbic acid gave a maximum conversion of 99%. The results from using Lipozyme TLIM and Novozym 435 as biocatalysts both showed that a w was an important factor for the conversion of L-ascorbic acid. The effect of pH value on lipase-catalyzed L-ascorbic acid esterification in acetone was also investigated. Furthermore, results from a kinetic characterization of Lipozyme TLIM were compared with those for Novozym 435, and suggested that the maximum reaction rate for Lipozyme TLIM was greater than that for Novozym 435, while the enzyme affinity for substrate was greater for Novozym 436.  相似文献   

18.
Various dihydroxyacetone-phosphate (DHAP) analogues bearing an aromatic ring or β-dicarbonyl structures were synthesized. Their capacity to form a stabilized iminium ion or conjugated enamine in the reaction catalyzed by rabbit muscle aldolase (EC 4.1.2.13) were investigated by enzymatic kinetics and UV difference spectroscopic techniques. Whereas the aromatic derivative led to competitive inhibition without detectable iminium ion formation, slow reversible inhibitions of aldolase by β-dicarbonyl compounds was shown to have taken place. Conjugated enamine formation at the active site of the enzyme was detected by their specific absorbances close to 317 nm.  相似文献   

19.
20.
The influence of different sulphur to nitrogen (S/N) ratios on the specific autotrophic denitrification activity was studied in batch experiments using thiosulphate and nitrate as substrates. Transitory accumulations of nitrite were observed for assays with S/N ratios of 3.70 and 6.67 g/g, probably due to the higher specific reduction rate of nitrate compared to that of nitrite. Nitrite was the main end product when S/N ratios of 1.16 and 2.44 g/g were tested. The effects of endogenous (NO(3)(-),NO(2)(-),S(2)O(3)(2-)and SO(4)(2-)) and exogenous compounds (acetate and NaCl) on the specific denitrifying activity of the sludge were tested. Nitrite and sulphate did exert clear inhibitory effects over the process while thiosulphate, acetate and NaCl did not have strong effects at the concentrations tested. Similar experiments also showed that sulphur was not a suitable electron donor for these microorganisms, but sulphide was used successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号