首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Nucleotide sequence of Klebsiella pneumoniae lac genes.   总被引:10,自引:8,他引:2       下载免费PDF全文
The nucleotide sequences of the Klebsiella pneumoniae lacI and lacZ genes and part of the lacY gene were determined, and these genes were located and oriented relative to one another. The K. pneumoniae lac operon is divergent in that the lacI and lacZ genes are oriented head to head, and complementary strands are transcribed. Besides base substitutions, the lacZ genes of K. pneumoniae and Escherichia coli have suffered short distance shifts of reading frame caused by additions or deletions or both during evolutionary divergence from a common ancestral gene. Relative to corresponding E. coli sequences, the nucleotide sequences of the lacZ and lacY genes are 61 and 67% conserved, and the lacI genes are 49% conserved. A comparison of both nucleotide and amino acid sequences revealed that the K. pneumoniae and E. coli lacI genes and lac repressor proteins each are related to the galR gene and gal repressor of E. coli to about the same extent. In terms of evolutionary relationships, the divergence of the forerunner of the galR gene from an ancestral lac repressor gene preceded separation and differentiation of the K. pneumoniae and E. coli lac repressor genes.  相似文献   

2.
Tn10 insertion in the galS (ultrainduction factor) gene of Escherichia coli allows the gal operon to be constitutively expressed at a very high level, equal to that seen in a delta galR strain in the presence of an inducer. The insertion has been mapped by criss-cross Hfr matings and by marker rescue into Kohara phages at 46 min on the E. coli chromosome.  相似文献   

3.
The sor genes for L-sorbose (Sor) degradation of Escherichia coli EC3132, a wild-type strain, have been cloned on a 10.8-kbp fragment together with parts of the metH gene. The genes were mapped by restriction analysis, by deletion mapping, and by insertion mutagenesis with Tn1725. Seven sor genes with their corresponding gene products have been identified. They form an operon (gene order sorCpCDFBAME) inducible by L-sorbose, and their products have the following functions: SorC (36 kDa), regulatory protein with repressor-activator functions; SorD (29 kDa), D-glucitol-6-phosphate dehydrogenase; SorF and SorB (14 and 19 kDa, respectively), and SorA and SorM (27 and 29 kDa, respectively), two soluble and two membrane-bound proteins, respectively, of an L-sorbose phosphotransferase transport system; SorE (45 kDa), sorbose-1-phosphate reductase. The sor operon from E. coli EC3132 thus is identical to the operon from Klebsiella pneumoniae KAY2026. On the basis of restriction mapping followed by Southern hybridization experiments, the sor genes were mapped at 91.2 min on the chromosome, 3.3 kbp downstream of the metH-iclR gene cluster, and shown to be transcribed in a counterclockwise direction. The chromosomal map of the Sor+ strain EC3132 differs from that of the Sor- strain K-12 in approximately 8.6 kbp.  相似文献   

4.
DNA hybridization experiments demonstrated that the gene clusters encoding the F8 fimbriae (fei) as well as the type I fimbriae (pil) exist in a single copy on the chromosome of E. coli O18:K5 strain 2980. In conjugation experiments with appropriate donors, the chromosomal site of these gene clusters was determined. The pil genes were mapped close to the gene clusters thr and leu controlling the biosynthesis of threonine and leucine, respectively. The fei genes were found to be located close to the galactose operon (gal) between the position 17 and 21 of the E. coli chromosomal linkage map.  相似文献   

5.
In the slow-growing soybean symbiont, Bradyrhizobium japonicum (strain 110), a nifA-like regulatory gene was located immediately upstream of the previously mapped fixA gene. By interspecies hybridization and partial DNA sequencing the gene was found to be homologous to nifA from Klebsiella pneumoniae and Rhizobium meliloti, and to a lesser extent, also to ntrC from K. pneumoniae. The B. japonicum nifA gene product was shown to activate B. japonicum and K. pneumoniae nif promoters (using nif::lacZ translational fusions) both in Escherichia coli and B. japonicum backgrounds. In the heterologous E. coli system activation was shown to be dependent on the ntrA gene product. Site-directed insertion and deletion/replacement mutagenesis revealed that nifA is probably the promoter-distal cistron within an operon. NifA- mutants were Fix- and pleiotropic: (i) they were defective in the synthesis of several proteins including the nifH gene product (nitrogenase Fe protein); the same proteins had been known to be repressed under aerobic growth of B. japonicum but derepressed at low O2 tension; (ii) the mutants had an altered nodulation phenotype inducing numerous, small, widely distributed soybean nodules in which the bacteroids were subject to severe degradation. These results show that nifA not only controls nitrogenase genes but also one or more genes involved in the establishment of a determinate, nitrogen-fixing root nodule symbiosis.  相似文献   

6.
7.
The chromosomally encoded galactose utilization (gal) operons of Salmonella typhimurium and S. typhi were each cloned on similar 5.5-kilobase HindIII fragments into pBR322 and were identified by complementation of Gal- Escherichia coli strains. Restriction endonuclease analyses indicated that these Salmonellae operons share considerable homology, but some heterogeneities in restriction sites were observed. Subcloning and exonuclease mapping experiments showed that both operons have the same genetic organization as that established for the E. coli gal operon (i.e., 5' end, promoter, epimerase, transferase, kinase, and 3' end). Two gal operator regions (oE and oI) of S. typhimurium, identified by repressor titration in an E. coli superrepressor [galR(Sup)] mutant, were sequenced and found to flank the promoter region. This promoter region is identical to the -10 and -35 regions of the E. coli gal operon. Minicell studies demonstrated that the three gal structural genes of S. typhimurium encode separate polypeptides of 39 kilodaltons (kDa) (epimerase, 337 amino acids [aa's]), 41 kDa (transferase, 348 aa's), and 43 kDa (kinase, 380 aa's). Despite functional and organizational similarities, DNA sequence analysis revealed that the S. typhimurium gal genes show less than 70% homology to the E. coli gal operon. Because of codon degeneracy, the deduced amino acid sequences of these polypeptides are highly conserved (greater than 90% homology) as compared with those of the E. coli gal enzymes. These studies have defined basic genetic parameters of the gal genes of two medically important Salmonella species, and our findings support the hypothesized divergent evolution of E. coli and Salmonella spp. from a common ancestral parent bacterium.  相似文献   

8.
9.
10.
The phoP-phoQ operon of Salmonella typhimurium is a member of the family of two-component regulatory systems and controls expression of the phoN gene that codes for nonspecific acid phosphatase and the genes involved in the pathogenicity of the bacterium. The phoP-phoQ operon of Escherichia coli was cloned on a plasmid vector by complementation of a phoP mutant, and the 4.1-kb nucleotide sequence, which includes the phoP-phoQ operon and its flanking regions, was determined. The phoP-phoQ operon was mapped at 25 min on the standard E. coli linkage map by hybridization with the Kohara mini set library of the E. coli chromosome (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987). The predicted phoP and phoQ gene products consist of 223 and 486 amino acids with estimated molecular masses of 25,534 and 55,297 Da, respectively, which correspond well with the sizes of the PhoP and PhoQ proteins identified by the maxicell method. The amino acid sequences of PhoP and PhoQ of E. coli were 93 and 86% identical, respectively, to those of S. typhimurium.  相似文献   

11.
We present the gene organization and DNA sequence of the Streptomyces lividans galactose utilization genes. Complementation of Escherichia coli galE, galT, or galK mutants and DNA sequence analysis were used to demonstrate that the galactose utilization genes are organized within an operon with the gene order galT, galE, and galK. Comparison of the inferred protein sequences for the S. lividans gal gene products to the corresponding E. coli and Saccharomyces carlbergensis sequences identified regions of structural homology within each of the galactose utilization enzymes. Finally, we discuss a potential relationship between the gene organization of the operon and the functional roles of the gal enzymes in cellular metabolism.  相似文献   

12.
13.
A Ahmed 《Gene》1984,28(1):37-43
Insertion of a HindIII-EcoRI fragment carrying part of the gal operon from lambda gal+ into pBR322 yields a plasmid (pAA3) which confers strong galactose sensitivity on E. coli strains deleted for the gal operon. Sensitivity to galactose is caused by the expression of kinase and transferase (but not epimerase) genes from a promoter located in the tet gene of pBR322. Insertion of a DNA fragment carrying Tn9 at the HindIII junction blocks gal expression and produces a galactose-resistant phenotype. Hence, galactose resistance can be used to select DNA fragments cloned at the HindIII site. The system was used efficiently for cloning lambda, yeast, and human DNA. The cloned fragments can be screened directly for the presence of promoters by testing for tetracycline resistance. Alternatively, these plasmids can be used as cosmids for cloning large fragments of DNA at a number of sites. Construction of several related vectors is described.  相似文献   

14.
With the lac operon fusion technique, mutants were isolated in two genes that specify two outer membrane proteins designated FhuE (76 K) and Fiu (83 K). The synthesis of both proteins was increased under low iron growth conditions. The FhuE-protein was shown to be necessary for iron uptake via coprogen, an iron chelator produced by certain fungi, e.g. Neurospora crassa. In addition to fhueE the genes fhuCDB, tonB and exbB were necessary for iron coprogen uptake. The gene fhuE was mapped between kdp and gltA near 16 min on the genetic map of E. coli K12, while gene fiu was mapped near 18 min between chlA and chlE. Nor iron transport system could be assigned as yet to the Fiu protein.  相似文献   

15.
16.
The levanase gene (sacC) of Bacillus subtilis is the distal gene of a fructose-inducible operon containing five genes. The complete nucleotide sequence of this operon was determined. The first four genes levD, levE, levF and levG encode polypeptides that are similar to proteins of the mannose phosphotransferase system of Escherichia coli. The levD and levE gene products are homologous to the N and C-terminal part of the enzyme IIIMan, respectively, whereas the levF and levG gene products have similarities with the enzymes IIMan. Surprisingly, the polypeptides encoded by the levD, levE, levF and levG genes are not involved in mannose uptake, but form a fructose phosphotransferase system in B. subtilis. This transport is dependent on the enzyme I of the phosphotransferase system (PTS) and is abolished by deletion of levF or levG and by mutations in either levD or levE. Four regulatory mutations (sacL) leading to constitutive expression of the lavanase operon were mapped using recombination experiments. Three of them were characterized at the molecular level and were located within levD and levE. The levD and levE gene products that form part of a fructose uptake PTS act as negative regulators of the operon. These two gene products may be involved in a PTS-mediated phosphorylation of a regulator, as in the bgl operon of E. coli.  相似文献   

17.
H Hama  N Almaula  C G Lerner  S Inouye  M Inouye 《Gene》1991,105(1):31-36
The gene encoding nucleoside diphosphate (NDP) kinase of Escherichia coli was identified by polymerase chain reaction using oligodeoxyribonucleotide primers synthesized on the basis of consensus sequences from Myxococcus xanthus and various eukaryotic NDP kinases. The gene (ndk), mapped at 54.2 min on the E. coli chromosome, was cloned and sequenced. The E. coli NDP kinase was found to consist of 143 amino acid residues that are 57, 45, 45, 42, 43, and 43% identical to the M. xanthus, Dictyostelium discoideum, Drosophila melanogaster, mouse, rat, and human enzymes, respectively. The ndk gene appears to be in a monocistronic operon and, when cloned in a pUC vector, NDP kinase was overproduced at a level of approx. 25% of total cellular proteins. The protein could be labeled with [gamma-32P]ATP and migrated at a 16.5 kDa when electrophoresed in SDS-polyacrylamide gel, which is in good agreement with the Mr of the purified E. coli NDP kinase previously reported.  相似文献   

18.
In order to compare the genetic and epigenetic effects of genotoxic agents, we have constructed Escherichia coli K12 strains that allow the detection of mutagenesis, SOS induction (epigenetic effect) and genetic recombination in the same genetic background. The epigenetic effect was detected in a similar way to any genetic alteration, i.e. by counting altered clones (colonies), using a gene fusion system that responds to a temporary epigenetic effect by a stable, heritable switch. The gene fusion consists of the E. coli gal operon and a partially deleted prophage lambda, resulting in the gal operon coming under the control of the cI and cro genes. It allows the detection of SOS induction and forward mutagenesis in the cI gene. Even a temporary inactivation of the CI repressor in this particular system leads to a stable epigenetic switch transmitted to the cellular progeny, which can be detected as Gal+ (red) colonies. The genetic (mutational inactivation of gene cI) and epigenetic (proteolytic inactivation of the product of gene cI) mechanisms leading to gal expression can be distinguished. Genetic recombination between two heteroallelic lacZ genes, one located in the bacterial chromosome, the other on an F'lac plasmid, can be detected as Lac+ colonies. Radiation and several chemical mutagens show very different capacities in generating mutants, inductants and recombinants; therefore, a dose range of any physical or chemical agent generates a set of relative values for the generation of mutants, inductants and recombinants that are characteristic of the agent.  相似文献   

19.
B. L. Berg  V. Stewart 《Genetics》1990,125(4):691-702
Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.  相似文献   

20.
Escherichia coli is being developed as a biocatalyst for bulk chemical production from inexpensive carbohydrates derived from lignocellulose. Potential substrates include the soluble xylodextrins (xyloside, xylooligosaccharide) and xylobiose that are produced by treatments designed to expose cellulose for subsequent enzymatic hydrolysis. Adjacent genes encoding xylobiose uptake and hydrolysis were cloned from Klebsiella oxytoca M5A1 and are functionally expressed in ethanologenic E. coli. The xylosidase encoded by xynB contains the COG3507 domain characteristic of glycosyl hydrolase family 43. The xynT gene encodes a membrane protein containing the MelB domain (COG2211) found in Na(+)/melibiose symporters and related proteins. These two genes form a bicistronic operon that appears to be regulated by xylose (XylR) and by catabolite repression in both K. oxytoca and recombinant E. coli. Homologs of this operon were found in Klebsiella pneumoniae, Lactobacillus lactis, E. coli, Clostridium acetobutylicum, and Bacillus subtilis based on sequence comparisons. Based on similarities in protein sequence, the xynTB genes in K. oxytoca appear to have originated from a gram-positive ancestor related to L. lactis. Functional expression of xynB allowed ethanologenic E. coli to metabolize xylodextrins (xylosides) containing up to six xylose residues without the addition of enzyme supplements. 4-O-methylglucuronic acid substitutions at the nonreducing termini of soluble xylodextrins blocked further degradation by the XynB xylosidase. The rate of xylodextrin utilization by recombinant E. coli was increased when a full-length xynT gene was included with xynB, consistent with xynT functioning as a symport. Hydrolysis rates were inversely related to xylodextrin chain length, with xylobiose as the preferred substrate. Xylodextrins were utilized more rapidly by recombinant E. coli than K. oxytoca M5A1 (the source of xynT and xynB). XynB exhibited weak arabinosidase activity, 3% that of xylosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号