首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzymes 7,8-dihydroxymethylpterin-pyrophosphokinase (HPPK) and 7,8-dihydropteroate synthase (DHPS), which act sequentially in the folate pathway, were purified to homogeneity from crude extracts of Escherichia coli MC4100. The enzymes represent less than 0.01% of the total soluble protein. HPPK was purified greater than 10,000-fold; the native enzyme appears to be a monomer with a molecular mass of 25 kDa and a pI of 5.2. DHPS was purified greater than 7,000-fold; the native enzyme has an apparent molecular mass of 52 to 54 kDa and is composed of two identical 30-kDa subunits. The amino-terminal sequences for both enzymes have been determined.  相似文献   

2.
3.
4.
A human brain cDNA clone coding for a novel PDZ-domain protein of 124 amino acids has been previously isolated in our laboratory. The protein was termed GIP (glutaminase-interacting protein) because it interacts with the C-terminal region of the human brain glutaminase L. Here we report the heterologous expression of GIP as a histidine-tagged fusion protein in Escherichia coli cells. The induction conditions (temperature and isopropyl beta-d-thiogalactopyranoside concentrations) were optimized in such a way that GIP accounted for about 20% of the total E. coli protein. A simple and rapid procedure for purification was developed, which yielded 17 mg of purified GIP per liter of bacterial cell culture. The apparent molecular mass of the protein by SDS-PAGE was 16 kDa, whereas in native form it was determined to be 28 kDa, which suggests dimer formation. The nature and integrity of the recombinant protein were verified by mass spectrometry analysis. The functionality of the GIP protein was tested with an in vitro activity assay: after being pulled down with glutathione S-transferase-glutaminase, GIP was revealed by Western blot using anti-GIP antibodies. Furthermore, the glutaminase activity in crude rat liver extracts was inhibited by the presence of recombinant purified GIP protein.  相似文献   

5.
The peptide-N4-(N-acetyl-beta-D-glucosaminyl) asparagine amidase F (PNGase F) gene from Flavobacterium meningosepticum was cloned into a high copy number Escherichia coli plasmid. Levels of PNGase F activity produced in cultures of the recombinant strain were up to 100-fold higher than those obtained in cultures of F. meningosepticum. The complete PNGase F gene sequence was determined. Comparison of the predicted amino acid sequence of pre-PNGase F to the N-terminal sequence of the native mature enzyme indicates that the protein is synthesized with a 40-amino acid signal sequence that is removed during secretion in F. meningosepticum. The recombinant PNGase F produced in E. coli is a mixture of products comprised predominantly of two proteins with molecular masses of 36.3 and 36.6 kDa. These proteins have a higher apparent molecular mass than the 34.7-kDa native enzyme. N-terminal amino acid sequencing demonstrated that these higher molecular mass products result from cleavage of the pre-PNGase F in E. coli upstream of the native N terminus. The PNGase F gene was engineered to encode a preenzyme that was processed in E. coli to give an N terminus identical to that of the native enzyme. Purified preparations of this form of recombinant PNGase F were shown to be suitable for glycoprotein analyses since they possess no detectable endo-beta-N-acetylglucosaminidase F, exoglycosidase, or protease activity.  相似文献   

6.
The dihydrolipoamide S-acetyltransferase (E2) subunit of the maize mitochondrial pyruvate dehydrogenase complex (PDC) was postulated to contain a single lipoyl domain based upon molecular mass and N-terminal protein sequence (Thelen, J. J., Miernyk, J. A., and Randall, D. D. (1998) Plant Physiol. 116, 1443-1450). This sequence was used to identify a cDNA from a maize expressed sequence tag data base. The deduced amino acid sequence of the full-length cDNA was greater than 30% identical to other E2s and contained a single lipoyl domain. Mature maize E2 was expressed in Escherichia coli and purified to a specific activity of 191 units mg(-1). The purified recombinant protein had a native mass of approximately 2.7 MDa and assembled into a 29-nm pentagonal dodecahedron as visualized by electron microscopy. Immunoanalysis of mitochondrial proteins from various plants, using a monoclonal antibody against the maize E2, revealed 50-54-kDa cross-reacting polypeptides in all samples. A larger protein (76 kDa) was also recognized in an enriched pea mitochondrial PDC preparation, indicating two distinct E2s. The presence of a single lipoyl-domain E2 in Arabidopsis thaliana was confirmed by identifying a gene encoding a hypothetical protein with 62% amino acid identity to the maize homologue. These data suggest that all plant mitochondrial PDCs contain an E2 with a single lipoyl domain. Additionally, A. thaliana and other dicots possess a second E2, which contains two lipoyl domains and is only 33% identical at the amino acid level to the smaller isoform. The reason two distinct E2s exist in dicotyledon plants is uncertain, although the variability between these isoforms, particularly within the subunit-binding domain, suggests different roles in assembly and/or function of the plant mitochondrial PDC.  相似文献   

7.
Phenylalanine hydroxylase, important in phenylalanine metabolism in mammals, is regulated through short-term (activation) and long-term (induction) mechanisms. To help elucidate the structure-function relationships involved in the activation of this enzyme, we have isolated and characterized full-length cDNA clones to rat phenylalanine hydroxylase. Recombinant rat phenylalanine hydroxylase was placed into an expression vector in Escherichia coli. The enzyme has been purified to homogeneity and its physical and catalytic properties have been characterized. The molecular weight and the fluorescence emission spectrum of the recombinant enzyme were identical to those of the native enzyme. The recombinant enzyme could be activated by incubation with phenylalanine or lysolecithin or by phosphorylation, as is the rat liver enzyme. The extent of activation is the same as that for the native enzyme in each case except for phenylalanine, which activates the recombinant enzyme only 5- to 10-fold rather than the 15- to 30-fold activation observed with the native enzyme. The kinetic constants determined for the recombinant enzyme are also essentially the same as those reported for the native enzyme. We conclude that this enzyme is essentially identical to the native enzyme and should be very useful in the future study of this important hydroxylase.  相似文献   

8.
A transferrin binding protein was isolated from normal rat placenta and from iron-deficient rat plasma using a human transferrin affinity column. The yield of the isolated pure protein from iron-deficient rat plasma was about 0.5 micrograms/ml plasma. The major protein had a molecular mass of 85 kDa and contained carbohydrate. Reduction with mercaptoethanol did not change the molecular mass of the plasma transferrin binding protein whereas the native placental transferrin receptor of 180 kDa was reduced to 90 kDa. The transferrin binding protein reacted with both monoclonal and polyclonal antibodies raised against rat transferrin receptor. Immunoblotting of both normal and iron deficient rat plasma showed that the transferrin binding protein had a molecular mass of 85 kDa. In vitro digestion of purified rat placental transferrin receptor and red blood cells with trypsin provided an identical peptide profile, suggesting that the transferrin binding protein in rat plasma is derived from proteolysis of the extracellular portion of the transferrin receptor of the erythroid tissues.  相似文献   

9.
Mitochondrial manganese-containing superoxide dismutase was purified around 112-fold with an overall yield of 1.1% to apparent electrophoretic homogeneity from the dimorphic pathogenic fungus, Candida albicans. The molecular mass of the native enzyme was 106 kDa and the enzyme was composed of four identical subunits with a molecular mass of 26 kDa. The enzyme was not sensitive to either cyanide or hydrogen peroxide. The N-terminal amino acid sequence alignments (up to the 18th residue) showed that the enzyme has high similarity to the other eukaryotic manganese-containing superoxide dismutases. The gene sod2 encoding manganese-containing superoxide dismutase has been cloned using a product obtained from polymerase chain reaction. Sequence analysis of the sod2 predicted a manganese-containing superoxide dismutase that contains 234 amino acid residues with a molecular mass of 26173 Da, and displayed 57% sequence identity to the homologue of Saccharomyces cerevisiae. The deduced N-terminal 34 amino acid residues may serve as a signal peptide for mitochondrial translocation. Several regulatory elements such as stress responsive element and haem activator protein 2/3/4/5 complex binding sites were identified in the promoter region of sod2. Northern analysis with a probe derived from the cloned sod2 revealed a 0.94-kb band, which corresponds approximately to the expected size of mRNA deduced from sod2.  相似文献   

10.
A glutathione peroxidase (GPX) protein was purified approximately 1000-fold from Southern bluefin tuna (Thunnus maccoyii) liver to a final specific activity of 256 micromol NADPH oxidised min(-1) mg(-1) protein. Gel filtration chromatography and denaturing protein gel electrophoresis of the purified preparation indicated that the protein has a native molecular mass of 85 kDa and is most likely a homotetramer with subunits of approximately 24 kDa. The Km values of the purified enzyme for hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide and glutathione were 12, 90, 90 and 5900 microM, respectively. The Km values for cumene hydroperoxide and t-butyl hydroperoxide were approximately 8-fold greater than the Km value for hydrogen peroxide. Thus, the SBT liver GPX has a considerably greater affinity for hydrogen peroxide than for the other two substrates. The pH optimum of the purified enzyme was pH 8.0. Immunoblotting experiments with polyclonal antibodies, raised against a recombinant human GPX, provided further evidence that the purified SBT enzyme is a genuine GPX.  相似文献   

11.
12.
Chromosomal DNA from Actinomyces viscosus was digested with restriction endonucleases and the fragments ligated with pUC-vectors were used to transform Escherichia coli cells. Clones bearing the required sialidase gene were detected by spraying the colonies with the fluorogenic sialidase substrate MU-Neu5Ac. The identity of the cloned sialidase was confirmed after the 5700-fold enrichment and comparison with the purified enzyme of A. viscosus. Both sialidases were identical with regard to molecular mass, substrate specificity tested with sialyllactoses, and the inhibition of their activity by heterologous antisialidase antibodies. The sequenced insert (EMBL accession number X62276) revealed a mol% G + C of 68.2, typical for A. viscosus. An open reading frame of 2739 bp follows a sequence with dyad symmetry and an AG-rich region, and codes for 913 amino acids representing a molecular mass of 113 kDa. The conserved amino acid sequence [Ser-X-Asp-X-Gly-X-Thr-Trp] typical for bacterial sialidases was found at five positions in the predicted amino acid sequence. The gene of this enzyme is expressed by E. coli, despite the low relatedness of both species.  相似文献   

13.
Catalase is a characteristic enzyme of peroxisomes. To study the molecular mechanisms of the biogenesis of peroxisomes and catalase in a less complex system than rat liver cells, we expressed recombinant rat catalase in Escherichia coli, which has no peroxisomes. The concentration of recombinant catalase produced in E. coli transformed with the expression vector carrying the complete coding region of rat catalase cDNA was about 0.1% of the total soluble protein. The recombinant catalase was purified by DEAE-cellulose column chromatography followed by acidic ethanol precipitations. The properties of rat liver catalase and those of the recombinant were similar with respect to molecular mass, catalytic properties, profiles of absorption spectra, and iron contents. The NH2-terminal amino acid sequence of the purified recombinant catalase, as determined by Edman degradation, was in complete agreement with the amino acid sequence predicted from the nucleotide sequence of rat catalase cDNA, except that the first initiator methionine was not detected. The COOH-terminal amino acid sequence was determined by carboxypeptidase A digestion and the sequence, -Ala-Asn-Leu-OH, matched the predicted COOH-terminal amino acid sequence of rat catalase. Recombinant rat catalase gave almost the same multiple protein bands on native polyacrylamide gel isoelectric focusing as observed with authentic rat liver catalase.  相似文献   

14.
Recently, a potent transforming gene which was exclusively expressed in rat pituitary tumor but not in normal pituitary had been isolated and named as pituitary tumor transforming gene (PTTG). A cDNA clone encoding human homologue of rat PTTG was isolated from human fetal liver cDNA library. It contained an open reading frame of 603 base pairs predicting a protein composed of 201 amino acids with a calculated molecular weight of 26 kDa. The deduced protein showed about 85% homology (78% identity, 7% favored substitution) with the rat PTTG. Northern blot analysis showed that the cDNA hybridized to 1.0 kb mRNA species which was expressed in fetal liver and several cancer cell lines. These results suggest that the presence of the human homologue of rat PTTG gene may not be restricted to pituitary tumor.  相似文献   

15.
The Gluconobacter oxydans 621H genome contains two genes (gox1122 and gox0499) that encode putative cytosolic NAD(P)-dependent aldehyde dehydrogenases. Each gene was expressed in Escherichia coli, and the recombinant enzymes were purified and characterized. The native protein Gox1122 exhibited an apparent molecular mass of 50.1 kDa, and the subunit mass was 50.5 kDa, indicating a monomeric structure of the native enzyme. The preferred substrates were acetaldehyde and NADP. The enzyme also oxidized other short-chained aliphatic and aromatic aldehydes at lower rates. Recombinant protein Gox0499 was composed of a single subunit and had an apparent molecular mass of 49.5 kDa. The substrate spectrum of Gox0499 was broad with a preference for long-chained aliphatic and aromatic aldehydes. Highest activities were obtained using dodecanal and NAD as substrates. RT real-time PCR showed that genes gox0499 and gox1122 were expressed at an elevated level (about 3-fold) when the cells were exposed to ethanol and dodecanal in comparison to control cells.  相似文献   

16.
Using immunological methods, a protein specific to the inner zones of the rat adrenal cortex, and called inner zone antigen (IZAg), was previously shown to have two interrelated forms of 26 kDa (IZAg1) and 55-60 kDa (IZAg2), and to have an action on steroid hydroxylation. After two-dimensional gel electrophoresis, and immunoaffinity column purification, N-terminal amino-acid analysis showed that the first 12 amino acids were identical to those of a recently described putative membrane located progesterone receptor (PPMR). RT-PCR was then used to generate the cDNA of this protein, using RNA extracted from rat adrenals. A glutathione S-transferase (GST)-fusion construct was expressed in Escherichia coli, and shown to generate an immunoreactive product of molecular mass consistent with its identification as IZAg1. More detailed examination of the distribution of this protein, not only in the zona fasciculata/reticularis of the adrenal cortex, but also in the Leydig cell, kidney and liver, suggest it may have a role in steroid hormone synthesis and/or metabolism.  相似文献   

17.
The gene encoding cyclohexadienyl dehydratase (denoted pheC) was cloned from Pseudomonas aeruginosa by functional complementation of a pheA auxotroph of Escherichia coli. The gene was highly expressed in E. coli due to the use of the high-copy number vector pUC18. The P. aeruginosa cyclohexadienyl dehydratase expressed in E. coli was purified to electrophoretic homogeneity. The latter enzyme exhibited identical physical and biochemical properties as those obtained for cyclohexadienyl dehydratase purified from P. aeruginosa. The activity ratios of prephenate dehydratase to arogenate dehydratase remained constant (about 3.3-fold) throughout purification, thus demonstrating a single protein having broad substrate specificity. The cyclohexadienyl dehydratase exhibited Km values of 0.42 mM for prephenate and 0.22 mM for L-arogenate, respectively. The pheC gene was 807 base pairs in length, encoding a protein with a calculated molecular mass of 30,480 daltons. This compares with a molecular mass value of 29.5 kDa determined for the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Since the native molecular mass determined by gel filtration was 72 kDa, the enzyme probably is a homodimer. Comparison of the deduced amino acid sequence of pheC from P. aeruginosa with those of the prephenate dehydratases of Corynebacterium glutamicum, Bacillus subtilis, E. coli, and Pseudomonas stutzeri by standard pairwise alignments did not establish obvious homology. However, a more detailed analysis revealed a conserved motif (containing a threonine residue known to be essential for catalysis) that was shared by all of the dehydratase proteins.  相似文献   

18.
Phospholipid methyltransferase, the enzyme that converts phosphatidylethanolamine into phosphatidylcholine with S-adenosyl-L-methionine as the methyl donor, was purified to apparent homogeneity from rat liver microsomal fraction. When analysed by SDS/polyacrylamide-gel electrophoresis only one protein, with molecular mass about 50 kDa, is detected. This protein could be phosphorylated at a single site by incubation with [alpha-32P]ATP and the catalytic subunit of cyclic AMP-dependent protein kinase. A less-purified preparation of the enzyme is mainly composed of two proteins, with molecular masses about 50 kDa and 25 kDa, the 50 kDa form being phosphorylated at the same site as the homogeneous enzyme. After purification of both proteins by electro-elution, the 25 kDa protein forms a dimer and migrates on SDS/polyacrylamide-gel electrophoresis with molecular mass about 50 kDa. Peptide maps of purified 25 kDa and 50 kDa proteins are identical, indicating that both proteins are formed by the same polypeptide chain(s). It is concluded that rat liver phospholipid methyltransferase can exist in two forms, as a monomer of 25 kDa and as a dimer of 50 kDa. The dimer can be phosphorylated by cyclic AMP-dependent protein kinase.  相似文献   

19.
Purification and cDNA cloning of rat 6-pyruvoyl-tetrahydropterin synthase   总被引:2,自引:0,他引:2  
6-Pyruvoyl-tetrahydropterin synthase, which catalyzes the second step in the biosynthesis of tetrahydrobiopterin, was purified approximately 18,000-fold to apparent homogeneity from rat liver. The molecular mass of the native enzyme was estimated to be 83 kDa by gel filtration. The enzyme showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis corresponding to a molecular mass of 17 kDa. Up to 24 residues of the NH2-terminal sequence were determined by Edman degradation, which released a single amino acid at each step. These results indicate that the enzyme consists of identical subunits. The purified enzyme was digested with lysyl endopeptidase or V8 protease, and 11 peptide fragments were isolated. On the basis of the sequences of these peptides, oligonucleotides were synthesized and used to screen a rat liver cDNA library, and one cDNA clone was isolated. The complete nucleotide sequence of the 1176-base pair cDNA was then determined. The deduced amino acid sequence contained 144 amino acid residues, but a NH2-terminal four-amino acid sequence was not found in the purified protein. Therefore, the mature protein consists of 140 amino acids. A single mRNA band of 1.3 kilobases was obtained by RNA blot analysis of rat liver. The predicted amino acid sequence of 6-pyruvoyl-tetrahydropterin synthase was compared with the Protein Sequence Database of the National Biomedical Research Foundation, revealing significant local similarity to large T antigens from the polyomavirus family.  相似文献   

20.
Human mitochondrial ClpP (hClpP) and ClpX (hClpX) were separately cloned, and the expressed proteins were purified. Electron microscopy confirmed that hClpP forms heptameric rings and that hClpX forms a hexameric ring. Complexes of a double heptameric ring of hClpP with hexameric hClpX rings bound on each side are stable in the presence of ATP or adenosine 5'-(3-thiotriphosphate) (ATPgammaS), indicating that a symmetry mismatch is a universal feature of Clp proteases. hClpXP displays both ATP-dependent proteolytic activity and ATP- or ATPgammaS-dependent peptidase activity. hClpXP cannot degrade lambdaO protein or GFP-SsrA, specific protein substrates recognized by Escherichia coli (e) ClpXP. However, eClpX interacts with hClpP, and, when examined by electron microscopy, the resulting heterologous complexes are indistinguishable from homologous eClpXP complexes. The hybrid eClpX-hClpP complexes degrade eClpX-specific protein substrates. In contrast, eClpA can neither associate with nor activate hClpP. hClpP has an extra C-terminal extension of 28 amino acids. A mutant lacking this C-terminal extension interacts more tightly with both hClpX and eClpX and shows enhanced enzymatic activities but still does not interact with eClpA. Our results establish that human ClpX and ClpP constitute a bone fide ATP-dependent protease and confirm that substrate selection, which differs between human and E. coli ClpX, is dependent solely on the Clp ATPase. Our data also indicate that human ClpP has conserved sites required for interaction with eClpX but not eClpA, implying that the modes of interaction with ClpP may not be identical for ClpA and ClpX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号