首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the relationships among changes in cardiovagal activity, surface EMG, and measures of pulmonary function in a study of relaxation therapy for asthma. Changes in FEV 1 /FVC were negatively correlated with those in cardiac interbeat interval, consistent with the hypothesis that relaxation-induced changes in airway function are mediated autonomically, with increased vagal tone and/or decreased sympathetic arousal producing bronchoconstriction. Contrary to Kotses's theory of a vagal-trigeminal reflex as mediator for relaxation-induced improvement in asthma, decreases in pulmonary function occurred during relaxation sessions, accompanied by increases in cardiovagal activity, and within-session changes in frontal EMG in the first session of training were positively associated with changes in a measure of pulmonary function (FEV1/FVC). However, consistent with this hypothesis, first-session frontalis EMG changes were positively associated with changes in respiratory sinus arrhythmia, and last-session changes in cardiac interbeat interval were positively associated with changes in FEV1/FVC. The results suggest that the immediate effects of generalized relaxation instruction can be associated with a parasympathetic rebound, which, in turn, may induce countertherapeutic changes in asthma. However, the effects of specific facial muscle relaxation remain uncelar.  相似文献   

2.
The relationship of “awareness of muscle tension” to depth of relaxation was explored. In one experiment, accuracy of forearm flexor control was assessed using the psychophysical method of magnitude production, and depth of flexor relaxation was measured using the integrated EMG before and after EMG biofeedback training. No consistent relationship between motor-control accuracy and depth of relaxation was found. A second, similar experiment with frontalis showed increased accuracy of frontalis control with deeper relaxation. Accuracy of passive, verbal judgments of spontaneous frontalis tension fluctuation exhibited no clear relationship with depth of relaxation. It was concluded that forearm flexor and frontalis may be under the control of distinct mechanisms, and that afferent information probably contributes to the control of neither muscle. Three structural theories of the control mechanisms were considered, and one depending on the central monitoring of efferent outflow(rather than afferent inflow) seemed most compatible with the frontalis data. Both flexor and frontalis data could be accounted for by a two-phase scheme combining central outflow monitoring with the monitoring of mental contents for arousal value at very low muscle tension levels.  相似文献   

3.
Exposure to vibration is suggested as a risk factor for developing neck and shoulder disorders in working life. Mechanical vibration applied to a muscle belly or a tendon can elicit a reflex muscle contraction, also called tonic vibration reflex, but the mechanisms behind how vibration could cause musculoskeletal disorders has not yet been described. One suggestion has been that the vibration causes muscular fatigue. This study investigates whether vibration exposure changes the development of muscular fatigue in the trapezius muscle. Thirty-seven volunteers (men and women) performed a sub-maximal isometric shoulder elevation for 3 min. This was repeated four times, two times with induced vibration and two times without. Muscle activity was measured before and after each 3-min period to look at changes in the electromyography parameters. The result showed a significantly smaller mean frequency decrease when performing the shoulder elevation with vibration (?2.51 Hz) compared to without vibration (?4.04 Hz). There was also a slightly higher increase in the root mean square when exposed to vibration (5.7% of maximal voluntary contraction) compared to without (3.8% of maximal voluntary contraction); however, this was not statistically significant. The results of the present study indicate that short-time exposure to vibration has no negative acute effects on the fatiguing of upper trapezius muscle.  相似文献   

4.
Our prior studies indicated that postural fainting relates to splanchnic hypervolemia and thoracic hypovolemia during orthostasis. We hypothesized that thoracic hypovolemia causes excessive sympathetic activation, increased respiratory tidal volume, and fainting involving the pulmonary stretch reflex. We studied 18 patients 13-21 yr old, 11 who fainted within 10 min of upright tilt (fainters) and 7 healthy control subjects. We measured continuous blood pressure and heart rate, respiration by inductance plethysmography, end-tidal carbon dioxide (ET(CO(2))) by capnography, and regional blood flows and blood volumes using impedance plethysmography, and we calculated arterial resistance with patients supine and during 70 degrees upright tilt. Splanchnic resistance decreased until faint in fainters (44 +/- 8 to 21 +/- 2 mmHg.l(-1).min(-1)) but increased in control subjects (47 +/- 5 to 53 +/- 4 mmHg.l(-1).min(-1)). Percent change in splanchnic blood volume increased (7.5 +/- 1.0 vs. 3.0 +/- 11.5%, P < 0.05) after the onset of tilt. Upright tilt initially significantly increased thoracic, pelvic, and leg resistance in fainters, which subsequently decreased until faint. In fainters but not control subjects, normalized tidal volume (1 +/- 0.1 to 2.6 +/- 0.2, P < 0.05) and normalized minute ventilation increased throughout tilt (1 +/- 0.2 to 2.1 +/- 0.5, P < 0.05), whereas respiratory rate decreased (19 +/- 1 to 15 +/- 1 breaths/min, P < 0.05). Maximum tidal volume occurred just before fainting. The increase in minute ventilation was inversely proportionate to the decrease in ET(CO(2)). Our data suggest that excessive splanchnic pooling and thoracic hypovolemia result in increased peripheral resistance and hyperpnea in simple postural faint. Hyperpnea and pulmonary stretch may contribute to the sympathoinhibition that occurs at the time of faint.  相似文献   

5.
Experiments were carried out to test the effect of prolonged and repeated passive stretching (RPS) of the triceps surae muscle on reflex sensitivity. The results demonstrated a clear deterioration of muscle function immediately after RPS. Maximal voluntary contraction, average electromyographic activity of the gastrocnemius and soleus muscles, and zero crossing rate of the soleus muscle (recorded from 50% maximal voluntary contraction) decreased on average by 23.2, 19.9, 16.5, and 12.2%, respectively. These changes were associated with a clear immediate reduction in the reflex sensitivity; stretch reflex peak-to-peak amplitude decreased by 84. 8%, and the ratio of the electrically induced maximal Hoffmann reflex to the maximal mass compound action potential decreased by 43. 8%. Interestingly, a significant (P < 0.01) reduction in the stretch-resisting force of the measured muscles was observed. Serum creatine kinase activity stayed unaltered. This study presents evidence that the mechanism that decreases the sensitivity of short-latency reflexes can be activated because of RPS. The origin of this system seems to be a reduction in the activity of the large-diameter afferents, resulting from the reduced sensitivity of the muscle spindles to repeated stretch.  相似文献   

6.
Methacholine causes reflex bronchoconstriction   总被引:1,自引:0,他引:1  
To determine whether methacholine causes vagally mediated reflexconstriction of airway smooth muscle, we administered methacholine tosheep either via the bronchial artery or as an aerosol via tracheostomyinto the lower airways. We then measured the contraction of anisolated, in situ segment of trachealis smooth muscle and determinedthe effect of vagotomy on the trachealis response. Administeringmethacholine to the subcarinal airways via the bronchial artery(0.5-10.0 µg/ml) caused dose-dependent bronchoconstriction andcontraction of the tracheal segment. At the highest methacholine concentration delivered, trachealis smooth muscle tension increased anaverage of 186% over baseline. Aerosolized methacholine (5-7 breaths of 100 mg/ml) increased trachealis tension by 58% and airwaysresistance by 183%. As the bronchial circulation in the sheep does notsupply the trachea, we postulated that the trachealis contraction wascaused by a reflex response to methacholine in the lower airways.Bilateral vagotomy essentially eliminated the trachealis response andthe airways resistance change after lower airways challenge (either viathe bronchial artery or via aerosol) with methacholine. We concludethat 1) methacholine causes asubstantial reflex contraction of airway smooth muscle and2) the assumption may not be validthat a response to methacholine in humans or experimental animalsrepresents solely the direct effect on smooth muscle.

  相似文献   

7.
Congestive heart failure (CHF) induces abnormal regulation of peripheral blood flow during exercise. Previous studies have suggested that a reflex from contracting muscle is disordered in this disease. However, there has been very little investigation of the muscle reflex regulating sympathetic outflows in CHF. Myocardial infarction (MI) was induced by the coronary artery ligation in rats. Echocardiography was performed to determine fractional shortening (FS), an index of the left ventricular function. We examined renal and lumbar sympathetic nerve activities (RSNA and LSNA, respectively) during 1-min repetitive (1- to 4-s stimulation to relaxation) contraction or stretch of the triceps surae muscles. During these interventions, the RSNA and LSNA responded synchronously as tension was developed. The RSNA and LSNA responses to contraction were significantly greater in MI rats (n = 13) with FS <30% than in control animals (n = 13) with FS >40% (RSNA: +49 +/- 7 vs. +19 +/- 4 a.u., P < 0.01; LSNA: +28 +/- 7 vs. +8 +/- 2 a.u., P < 0.01) at the same tension development. Stretch also increased the RSNA and LSNA to a larger degree in MI (n = 13) than in control animals (n = 13) (RSNA: +36 +/- 6 vs. +19 +/- 3 a.u., P < 0.05; LSNA: +24 +/- 3 vs. +9 +/- 2 a.u., P < 0.01). The data demonstrate that CHF exaggerates sympathetic nerve responses to muscle contraction as well as stretch. We suggest that muscle afferent-mediated sympathetic outflows contribute to the abnormal regulation of peripheral blood flow seen during exercise in CHF.  相似文献   

8.
In anaesthetized paralysed, mechanically ventilated pigs, the vascular and respiratory effects of 80 ppm nitric oxide (NO) inhaled for 6 min were evaluated. To evoke different levels of smooth muscle contraction ET-1 or PAF, mediators involved in pulmonary disorders, were used. In control conditions, inhaled NO caused selective pulmonary vasodilatation without affecting respiratory resistances. This pulmonary vascular activity influenced the distensibility of the respiratory system and decreased inspiratory work. ET-1 administration significantly increased pulmonary arterial pressure and modestly changed mechanical properties of the respiratory system, while PAF caused potent vasoconstriction and bronchoconstriction associated with a marked change in volume-pressure relationship. In both cases, the changes in vascular and mechanical properties of the respiratory system increased inspiratory work. The vascular and respiratory activities of inhaled NO were correlated with preconstriction levels. The data show that the combination of vascular and respiratory effects improves pulmonary function, suggesting that inhalation of NO is a possible therapeutic approach for obstructive and inflammatory pulmonary diseases.  相似文献   

9.
We measured total chest wall impedance (Zw), "pathway impedances" of the rib cage (Zrcpath), and diaphragm-abdomen (Zd-apath), and impedance of the belly wall including abdominal contents (Zbw+) in five subjects during sustained expiratory (change in average pleural pressure [Ppl] from relaxation = 10 and 20 cmH2O) and inspiratory (change in Ppl = -10 and -20 cmH2O) muscle contraction, using forced oscillatory techniques (0.5-4 Hz) we have previously reported for relaxation (J. Appl. Physiol. 66: 350-359, 1989). Chest wall configuration and mean lung volume were kept constant. Zw, Zrcpath, Zd-apath, and Zbw+ all increased greatly at each frequency during expiratory muscle contraction; increases were proportional to effort. Zw, Zrcpath, and Zd-apath increased greatly during inspiratory muscle contraction, but Zbw+ did not. Resistances and elastances calculated from each of the impedances showed the same changes during muscle contraction as the corresponding impedances. Each of the resistances decreased as frequency increased, independent of effort; elastances generally increased with frequency. These frequency dependencies were similar to those measured in relaxed or tetanized isolated muscle during sinusoidal stretching (P.M. Rack, J. Physiol. Lond. 183: 1-14, 1966). We conclude that during respiratory muscle contraction 1) chest wall impedance increases, 2) changes in regional chest wall impedances can be somewhat independent, depending on which muscles contract, and 3) increases in chest wall impedance are due, at least in part, to changes in the passive properties of the muscles themselves.  相似文献   

10.
Sarcomere length and first-order diffraction line width were measured by laser diffraction during elongation of activated frog tibialis anterior muscle fiber bundles (i.e., eccentric contraction) at nominal fiber strains of 10, 25, or 35% (n = 18) for 10 successive contractions. Tetanic tension, measured just before each eccentric contraction, differed significantly among strain groups and changed dramatically during the 10-contraction treatment (P < 0.01). Average maximum tetanic tension for the three groups measured before any treatment was 203.7 +/- 6.8 kN/m2, but after the 10-eccentric contraction sequence decreased to 180.3 +/- 3.8, 125.1 +/- 7.8, and 78.3 +/- 5.1 kN/m2 for the 10, 25, and 35% strain groups, respectively (P < 0.0001). Addition of 10 mM caffeine to the bathing medium decreased the loss of tetanic tension in the 10% strain group but had only a minimal effect on either the 25 or 35% strain groups. Diffraction pattern line width, a measure of sarcomere length heterogeneity, increased significantly with muscle activation and then continued to increase with successive stretches of the activated muscle. Line width increase after each stretch was significantly correlated with the lower yield tension of the successive contractile record. These data demonstrate a direct association and, perhaps, a causal relationship between sarcomere strain and fiber bundle injury. They also demonstrate that muscle injury is accompanied by a progressive increase in sarcomere length heterogeneity, yielding lower yield tension as injury progresses.  相似文献   

11.
Previous studies have suggested that neurons in the pedunculopontine nucleus (PPN) are activated during static muscle contraction. Furthermore, activation of the PPN, via electrical stimulation or chemical disinhibition, is associated with increases in respiratory activity observed via diaphragmatic electromyogram recordings. The present experiments address the potential for PPN involvement in the regulation of the reflex diaphragmatic responses to muscle contraction in chloralose-urethane anesthetized rats. Diaphragmatic responses to unilateral static hindlimb muscle contraction, evoked via electrical stimulation of the tibial nerve, were recorded before and subsequent to bilateral microinjections of a synaptic blockade agent (CoCl2) into the PPN. The peak reflex increases in respiratory frequency (9.0 +/- 1.0 breaths/min) and minute integrated diaphragmatic electromyogram activity (14.6 +/- 3.3 units/min) were attenuated after microinjection of CoCl2 into the PPN (2.6 +/- 0.9 breaths/min and 4.6 +/- 2.1 units/min, respectively). Consistent diaphragmatic responses were observed in the subset of animals that were barodenervated. Control experiments suggest no effects of PPN synaptic blockade on the cardiovascular responses to muscle contraction. The results are discussed in terms of a potential role for the PPN in modulation of the reflex respiratory adjustments that accompany muscular activity.  相似文献   

12.
The purpose of this study was to examine the relative effectiveness of electromyographic biofeedback training(EMG BFT), remeditation, and progressive muscle relaxation(PMR) in eliciting a relaxation or trophotropic response as measured by frontalis muscle tension, heart rate, electrodermal response, respiration rate, and skin temperature. Fifty-four college students were randomly assigned to one of five groups:(1) control,(2) placebo control,(3) EMG BFT,(4) meditation,(5) PMR. After baseline measures were obtained subjects were trained in 10 30-minute training sessions and posttested. Comparisons by ANOVAs indicated there was a significant decrease in muscle tension in the EMG BFT and meditation groups and significant decreases in respiration rate in the meditation and PMR groups. No other changes were attributed to treatment.  相似文献   

13.
Effect of an isometric voluntary contraction of the soleus muscle (5–6 sec in duration) on the H reflex was studied in persons aged 25–45 years. A sharp enhancement of the H reflex at a dynamic phase of fast contraction (in the force increase period) and its less pronounced increase at a static phase of contraction were shown. When a paired stimulation of the nerve was used (interstimulus interval, 500 msec), a voluntary contraction of the muscle fully abolished the first stimulus-related suppression of the second H reflex. When the muscle contracted against the background of vibration, the suppressed H reflex recovered up the the level observed in the resting muscle, but did not reach the level characteristic for the contracting muscle. The findings show that the two pathways controlling the H reflex (descending and afferent) function independently, and apparently there exist at least two corresponding groups of interneurons causing a presynaptic inhibition of the H reflex.Neirofiziologiya/Neurophysiology, Vol. 25, No. 5, pp. 365–371, September–October, 1993.  相似文献   

14.
Previous studies have shown an association of visual demands during near work and increased activity of the trapezius muscle. Those studies were conducted under stationary postural conditions with fixed gaze and artificial visual load. The present study investigated the relationship between ciliary muscle contraction force and trapezius muscle activity across individuals during performance of a natural dynamic motor task under free gaze conditions. Participants (N = 11) tracked a moving visual target with a digital pen on a computer screen. Tracking performance, eye refraction and trapezius muscle activity were continuously measured. Ciliary muscle contraction force was computed from eye accommodative response. There was a significant Pearson correlation between ciliary muscle contraction force and trapezius muscle activity on the tracking side (0.78, p < 0.01) and passive side (0.64, p < 0.05). The study supports the hypothesis that high visual demands, leading to an increased ciliary muscle contraction during continuous eye–hand coordination, may increase trapezius muscle tension and thus contribute to the development of musculoskeletal complaints in the neck–shoulder area. Further experimental studies are required to clarify whether the relationship is valid within each individual or may represent a general personal trait, when individuals with higher eye accommodative response tend to have higher trapezius muscle activity.  相似文献   

15.
This pilot study compared biofeedback to increase respiratory sinus arrhythmia (RSA) with EMG and incentive inspirometry biofeedback in asthmatic adults. A three-group design (Waiting List Control n = 5, RSA biofeedback n = 6, and EMG biofeedback n = 6) was used. Six sessions of training were given in each of the biofeedback groups. In each of three testing sessions, five min. of respiratory resistance and EKG were obtained before and after a 20-min biofeedback session. Additional five-min epochs of data were collected at the beginning and end of the biofeedback period (or, in the control group, self-relaxation). Decreases in respiratory impedance occurred only in the RSA biofeedback group. Traub-Hering-Mayer (THM) waves (.03-.12 Hz) in heart period increased significantly in amplitude during RSA biofeedback. Subjects did not report significantly more relaxation during EMG or RSA biofeedback than during the control condition. However, decreases in pulmonary impedance, across groups, were associated with increases in relaxation. The results are consistent with Vaschillo's theory that RSA biofeedback exercises homeostatic autonomic reflex mechanisms through increasing the amplitude of cardiac oscillations. However, deep breathing during RSA biofeedback is a possible alternate explanation.  相似文献   

16.
It has been suggested that during repeated long-term stretch-shortening cycle (SSC) exercise the decreased neuromuscular function may result partly from alterations in stiffness regulation. Therefore, interaction between the short latency stretch-reflex component (M1) and muscle stiffness and their influences on muscle performance were investigated before and after long lasting SSC exercise. The test protocol included various jumps on a sledge ergometer. The interpretation of the sensitivity of the reflex was based on the measurements of the patellar reflexes and the M1 reflex components. The peak muscle stiffness was measured indirectly and calculated as a coefficient of the changes in the Achilles tendon force and the muscle length. The fatigue protocol induced a marked impairment of the neuromuscular function in maximal SSC jumps. This was demonstrated by a 14.1%–17.7% (n.s. –P < 0.001) reduction in the mean eccentric forces and a 17.3%–31.8% (n.s. –P < 0.05) reduction in the corresponding M1 area under the electromyograms. Both of these methods of assessing the short latency reflex response showed a clear deterioration in the sensitivity of the reflex after fatigue (P < 0.05–0.001). This was also the case for the eccentric peak stiffness of the soleus muscle which declined immediately after fatigue by 5.4% to 7.1% (n.s. –P < 0.05) depending on the jump condition. The results observed would suggest that the modulation of neural input to the muscle was at least partly of reflex origin from the contracting muscle, and furthermore, that the reduced muscle stiffness which accompanied the decreased reflex sensitivity could have been partly responsible for the weakened muscle performance due to impaired utilization of elastic energy. Accepted: 28 April 1998  相似文献   

17.
The present study examined the ability of three headache groups (migraine, mixed migraine/tension, and tension) to accurately discriminate subjective levels of muscle tension at the forearm flexor, frontalis, and trapezius muscle sites. Discrimination ability was assessed at pre- and posttreatment using a psychophysical method of magnitude production. Results show that the ability to discriminate muscle tension levels at pretreatment varied across the headache groups, with migraineurs being the most accurate (r=.854), followed by the mixed headache group (r=.785), and finally the tension headache group (r=.732). Discrimination ability significantly increased at the posttreatment assessment. A multiple regression analysis showed that pretreatment performance on the muscle discrimination task significantly predicted outcome (r=.75) from relaxation and biofeedback training for migraine patients but not for the mixed or tension headache groups.This research was supported by a grant from NINCDS, NS-15235.  相似文献   

18.
The effect of evoked muscle tension, active muscle mass, and fiber-type composition on the pressor reflex evoked by muscular contraction was examined in decerebrate and anesthetized cats. Muscular contraction was induced by stimulating the L7 and S1 ventral roots with 0.1-ms duration pulses three times motor threshold at various frequencies. The experiments were designed to isolate the variable under study as much as possible and included the use of selectively denervated preparations to limit contractions to specific muscles. It was found that altering the evoked tension by varying the resting muscle length had commensurate effects on the pressor reflex (greater evoked tension caused a larger reflex). In addition it was found that changing the amount of active muscle mass caused similar changes in the reflex (the smaller the muscle mass, the smaller the reflex). Finally, it was found that contrary to other accounts, pressor reflexes could be evoked by activation of the slow-twitch muscle soleus, composed exclusively of red (type I) fibers.  相似文献   

19.
N=1 withdrawal designs were employed with three children evidencing activity-level problems. Tutoring sessions occurred daily over a 2 1/2-month period. Each child was reinforced for decreasing frontalis muscle tension during auditory feedback while working arithmetic problems. Feedback was faded while tension reduction reinforcement was maintained. These procedures were repeated with reinforcement for increasing, rather than decreasing, muscle tension. Frontal EMG level, percent time on task, and motoric activity rate were obtained during sessions. Parent ratings of problem behavior in the home were recorded daily. Biofeedback with reinforcement was effective in both raising and lowering muscle tension. Effects were maintained by reinforcement. Results suggest a direct relationship between tension and activity levels. Academic performance and problem behavior improved significantly with reductions in EMG activity, although individual exceptions to these findings were present. Results lend support to the efficacy of frontal EMG biofeedback training in reducing activity, increasing attention to an academic task, and reducing problem behaviors.  相似文献   

20.
In the crickets Gryllus bimaculatus and Gryllus campestris, the two intrinsic antennal muscles in the scape (first antennal segment) control antennal movements in the horizontal plane. Of the 17 excitatory antennal motoneurons, three motoneurons, two fast and one slow, can be stimulated selectively and their effect on muscle contraction, i.e. antennal movement, measured. Simultaneously, either a common inhibitor (CI) neuron or two DUM neurons can be stimulated and the effect on the slow and/or fast muscle contraction measured. The activity of the common inhibitor affected only slow muscle contractions. It decreased contraction rate, increased relaxation rate and suppressed prolonged muscle tension. This effect was blocked by picrotoxin. DUM neuron stimulation affected both slow and fast contractions. It reduced slow and enhanced fast contractions but in only 10% of the experiments could this effect be detected. DUM neuron activity could be mimicked by octopamine application. Proctolin application enhanced both slow and fast contractions but did not increase muscle tension in the absence of motoneuron activity. The results are discussed in relation to the large variability of possible antennal movements during behaviors.Abbreviations CI common inhibitor neuron - DUM dorsal unpaired median neuron  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号