首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An increasing number of studies in both vertebrates and invertebrates show that the evolution of antimicrobial peptides is driven by positive selection. Because these diverse molecules show potential for therapeutic applications, they are currently the targets of much structural and functional research, providing extensive background data for evolutionary studies. In this paper, patterns of molecular evolution in antimicrobial peptide genes are reviewed. Evidence for positive selection on antimicrobial peptides includes an excess of nonsynonymous nucleotide substitutions, an excess of charge-changing amino acid substitutions, nonneutral patterns of allelic variation, and functional assays in vivo and in vitro that show improved antimicrobial effects for derived sequence variants. Positive selection on antimicrobial peptides may be as common as, but perhaps weaker than, selection on the best-known example of adaptively evolving immunity genes, the major histocompatibility complex. Thus, antimicrobial peptides present a useful and underutilized model for the study of adaptive molecular evolution.  相似文献   

2.
Transferrins are iron-binding proteins that are involved in iron storage and resistance to bacterial disease. Previous work has shown that nonsynonymous-to-synonymous-site substitution ratios (d(n)/d(s) ratios) between transferrin genes from some salmonid species were significantly greater than 1.0, providing evidence for positive selection at the transferrin gene. The purpose of the current study was to put these earlier results in a broader evolutionary context by examining variation among 25 previously published transferrin sequences from fish, amphibians, and mammals. The results of the study show that evidence for positive selection at transferrin is limited to salmonids-d(n)/d(s) ratios estimated for nonsalmonid lineages were generally less than 1.0. Within the salmonids, approximately 13% of the transferrin codon sites are estimated to be subject to positive selection, with an estimated d(n)/d(s) ratio of approximately 7. The three- dimensional locations of some of the selected sites were inferred by comparing these sites to homologous sites in the bovine lactoferrin crystallographic structure. The selected sites generally fall on the outside of the molecule, within and near areas that are bound by transferrin-binding proteins from human pathogenic bacteria. The physical locations of sites estimated to be subject to positive selection support previous speculation that competition for iron from pathogenic bacteria could be the source of positive selection.  相似文献   

3.
Autotransporter proteins: novel targets at the bacterial cell surface   总被引:3,自引:0,他引:3  
Autotransporter proteins constitute a family of outer membrane/secreted proteins that possess unique structural properties that facilitate their independent transport across the bacterial membrane system and final routing to the cell surface. Autotransporter proteins have been identified in a wide range of Gram-negative bacteria and are often associated with virulence functions such as adhesion, aggregation, invasion, biofilm formation and toxicity. The importance of autotransporter proteins is exemplified by the fact that they constitute an essential component of some human vaccines. Autotransporter proteins contain three structural motifs: a signal sequence, a passenger domain and a translocator domain. Here, the structural properties of the passenger and translocator domains of three type Va autotransporter proteins are compared and contrasted, namely pertactin from Bordetella pertussis, the adhesion and penetration protein (Hap) from Haemophilus influenzae and Antigen 43 (Ag43) from Escherichia coli. The Ag43 protein is described in detail to examine how its structure relates to functional properties such as cell adhesion, aggregation and biofilm formation. The widespread occurrence of autotransporter-encoding genes, their apparent uniform role in virulence and their ability to interact with host cells suggest that they may represent rational targets for the design of novel vaccines directed against Gram-negative pathogens.  相似文献   

4.
In the cell surface display system, the distance of a surface-displayed molecule from the cell surface should influence its functionality due to the interference by other surface structures. For the purpose of developing this distance-variable surface display system, we utilized a long fibrous adhesin, Acinetobacter trimeric autotransporter adhesin (AtaA) of the strain Tol 5. We constructed His-tagged full-length and shorter AtaA fibers designed by N-terminal deletion and expressed them in the ΔataA mutant. Immunoelectron microscopy clearly showed that they formed fibers on the cell surface and the His-tag was displayed on the fiber tip located at fixed distances from the cell surface. N-terminal deletion of AtaA shortened the distance between the His-tag and the cell surface, as designed. Time-course analyses of the cell-to-Ni-Sepharose beads binding revealed that cells producing the longer fibers bound more rapidly to the beads. The His-tagged AtaA derivatives were also displayed on Escherichia coli cells, and a similar tendency was shown; the His-tag on the longer fiber was more functional than that on the shorter one. Thus, we developed an on-fiber display system of a functional peptide using a long trimeric autotransporter adhesin (TAA) fiber, which can vary the distance between the displayed molecule and the cell surface.  相似文献   

5.
Burkholderia cenocepacia is a virulent species belonging to the Burkholderia cepacia complex (Bcc) and one of the most problematic agents of chronic lung infection in cystic fibrosis patients. B. cenocepacia possesses a large panel of virulence traits that include trimeric autotransporter adhesins (TAAs). Such proteins are obligate homotrimeric anchored in the outer membrane. They are players in the adhesion events that occur between bacteria and biotic/abiotic surfaces. In this study, we constructed two insertional-mutants for TAA bcaC and Histidine kinase (HK) BCAM0218 genes, which are clustered together within the B. cenocepacia K56-2 TAA cluster. The bcaC-mutant affects B. cenocepacia adhesion to extracellular matrix proteins and red blood cells hemagglutination. BcaC contributes to enhancing B. cenocepacia K56-2 adhesion to bronchial epithelial cells. The expression of bcaC seems to affect biofilm formation negatively. Due to a BCAM0218 disruption, the bcaC expression increases significantly, indicating that they are functionally linked. The overexpression of bcaC in the BCAM0218-mutant background rescues at least part of the BcaC functions. Altogether, these findings reveal the multifunctionality of BcaC as a novel B. cenocepacia K56-2 virulence factor and postulate the involvement of a sensor HK (BCAM0218) in the control of this TAA gene.  相似文献   

6.
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of food and water-borne E. coli-mediated human diarrhoea worldwide. The incidence in developing countries is estimated at 650 million cases per year, resulting in 800 000 deaths, primarily in children under the age of five. ETEC is also the most common cause of diarrhoea among travellers, including the military, from industrialized nations to less developed countries. In addition, ETEC is a major pathogen of animals, being responsible for scours in cattle and neonatal and postweaning diarrhoea in pigs and resulting in significant financial losses. Studies on the pathogenesis of ETEC infections have concentrated on the plasmid-encoded heat-stable and heat-labile enterotoxins and on the plasmid-encoded antigenically variable colonization factors. Relatively little work has been carried out on chromosomally encoded virulence factors. Here, we review the known virulence factors of ETEC and highlight the future for combating this major disease.  相似文献   

7.
The power of maximum likelihood tests of positive selection on protein-coding genes depends heavily on detecting and accounting for potential biases in the studied data set. Although the influence of transition:transversion and codon biases have been investigated in detail, little is known about how inaccuracy in the phylogeny used during the calculations affects the performance of these tests. In this study, 3 empirical data sets are analyzed using sets of simulated topologies corresponding to low, intermediate, and high levels of phylogenetic uncertainty. The detection of positive selection was largely unaffected by errors in the underlying phylogeny. However, the number of sites identified as being under positive selection tended to be overestimated.  相似文献   

8.
The electrically conductive pili (e-pili) of Geobacter species enable extracellular electron transfer to insoluble metallic minerals, electrodes and other microbial species, which confers biogeochemical significance and global prevalence on Geobacter in diverse anaerobic environments. E-pili are constructed by truncated PilA which is considered to have evolved from full-length pilin by gene fission under positive evolutionary selection. However, this hypothesis is based on phylogenetic analysis and has not yet been experimentally confirmed. Here, we reconstructed an ancestral strain of G. sulfurreducens (designated COMB) carrying full-length PilA by combining genes GSU1496 and GSU1497. The results demonstrated that strain COMB expressed and assembled the full-length fused PilA and exhibited an outer membrane c-type cytochrome profile similar to the wild-type strain. Surprisingly, the generated COMB-pili were also conductive, indicating the evolution of truncated PilA did not occur for conductivity. Moreover, strain COMB minimally reduced Fe(III) oxides but maintained its ability to respire electrodes, demonstrating the truncation of pilin enables iron respiration. This study provides the first experimental evidence that the truncation of pilin in Geobacter species confers adaption to Fe(III)-mineral-mediated selective pressures, and suggests an evolutionary event during which the separation of the GSU1497 gene helped Geobacter survive and thrive in natural environments.  相似文献   

9.
It is not clear whether matK evolves under Darwinian selection. In this study, 70 plant groups, representing 2,279 species at various evolutionary levels, were used to illustrate the molecular adaptation and evolutionary dynamics of gene divergence in matKs. Selective influences were investigated using standard dN/dS ratio methods. Analyses revealed the presence of positive selection in matKs of 32 plant groups. More positively selected sites were detected in the N-terminal region than in the RT domain and domain X of matK. Moreover, removing amino acid sites that are under positive selection has a significant effect on the bootstrap values of phylogenetic reconstruction. Our results suggest that the rapidly evolving matK evolves under positive selection in some lineages of land plants. Several regions of matK have experienced molecular adaptation, which fine-tunes maturase performance.  相似文献   

10.
HANS ELLEGREN 《Molecular ecology》2008,17(21):4586-4596
Genomics profoundly affects most areas of biology, including ecology and evolutionary biology. By examining genome sequences from multiple species, comparative genomics offers new insight into genome evolution and the way natural selection moulds DNA sequence evolution. Functional divergence, as manifested in the accumulation of nonsynonymous substitutions in protein-coding genes, differs among lineages in a manner seemingly related to population size. For example, the ratio of nonsynonymous to synonymous substitution (dN/dS) is higher in apes than in rodents, compatible with Ohta's nearly neutral theory of molecular evolution, which suggests that the fixation of slightly deleterious mutations contributes to protein evolution at an extent negatively correlated with effective population size. While this supports the idea that functional evolution is not necessarily adaptive, comparative genomics is uncovering a role for positive Darwinian selection in 10–40% of all genes in different lineages, estimates that are likely to increase when the addition of more genomes gives increased power. Again, population size seems to matter also in this context, with a higher proportion of fixed amino acid changes representing advantageous mutations in large populations. Genes that are particularly prone to be driven by positive selection include those involved with reproduction, immune response, sensory perception and apoptosis. Genetic innovations are also frequently obtained by the gain or loss of complete gene sequences. Moreover, it is increasingly realized, from comparative genomics, that purifying selection conserves much more than just the protein-coding part of the genome, and this points at an important role for regulatory elements in trait evolution. Finally, genome sequencing using outbred or multiple individuals has provided a wealth of polymorphism data that gives information on population history, demography and marker evolution.  相似文献   

11.
Summary One of the main challenges to the adaptationist programme in general and to the use of optimality models in behavioural and evolutionary ecology in particular is that natural selection need not optimise fitness. This challenge is addressed by considering the evolution of optimal patch choice by natural selection. The behavioural model is based on a state variable approach in which a strategy consists of a sequence denoting the patch to be visited as a function of the organism's state and time. The optimal strategy maximises expected terminal reproduction. The fitnesses of alternative strategies are computed by iteration of the associated equations for fitness; this characterises the adaptive behavioural landscape. There may be enormous numbers of strategies that have near optimal fitnesses. A population model is used to connect frequencies of behavioural types from one generation to the next. Theories on adaptive walks on fitness landscapes are considered in the context of behaviour. The main result is that within the context of optimality arguments at selective equilibrium, sub-optimal behaviours can persist. General implications for research in behavioural ecology, including tests of behavioural theories, are discussed.  相似文献   

12.
SSU1基因是涉及亚硫酸外排及SO2耐受性的重要因素之一。为了研究酿酒酵母(Saccharomyce cerevisiae)中SSU1对SO2耐受性及其分化机制, 文章探讨了SSU1基因在酿酒酵母中的遗传特征及进化规律。基于SSU1基因序列的聚类分析表明, 酿酒酵母群体可通过该基因分为3个亚群, 且与其分离的地理位置无关; 基于群体数据的McDonald-Kreitman 检验表明, SSU1基因在酿酒酵母中受到适应性选择的作用; Ka/Ks检验表明, 在酿酒酵母中, 不同的亚群间有Ka/Ks显著大于1 的值, 且PAML的支系模型检验到正选择作用在群体中特定的支系上; PAML的支系-位点模型检验获得9个潜在正选择作用位点, 其中有4个发生在受正选择作用的特定支系中; 基于ssu1p蛋白结构的分析表明, 在特定支系存在的正选择作用位点中, 除345(R/K)位点上两氨基酸替换均为碱性氨基酸外, 其他3个位点均是极性氨基酸/疏水性氨基酸之间替换, 考虑不同区域的氨基酸pKa值对其维持正常的功能有着重要的作用, 在该类位点的替换可能影响到ssu1p蛋白对SO2的转运作用。  相似文献   

13.
Using different maximum-likelihood models of adaptive evolution, signatures of natural selective pressure, operating across the naphthalene family of dioxygenases, were examined. A lineage- and branch-site specific combined analysis revealed that purifying selection pressure dominated the evolutionary history of the enzyme family. Specifically, episodic positive Darwinian selection pressure, affecting only a few sites in a subset of lineages, was found to be responsible for the evolution of nitroarene dioxygenases (NArDO) from naphthalene dioxygenase (NDO). Site-specific analysis confirmed the absence of diversifying selection pressure at any particular site. Different sets of positively selected residues, obtained from branch-site specific analysis, were detected for the evolution of each NArDO. They were mainly located around the active site, the catalytic pocket and their adjacent regions, when mapped onto the 3D structure of the α-subunit of NDO. The present analysis enriches the current understanding of adaptive evolution and also broadens the scope for rational alteration of substrate specificity of enzyme by directed evolution.  相似文献   

14.
Sexual selection and the adaptive evolution of mammalian ejaculate proteins   总被引:1,自引:0,他引:1  
An elevated rate of substitution characterizes the molecular evolution of reproductive proteins from a wide range of taxa. Although the selective pressures explaining this rapid evolution are yet to be resolved, recent evidence implicates sexual selection as a potentially important explanatory factor. To investigate this hypothesis, we sought evidence of a high rate of adaptive gene evolution linked to postcopulatory sexual selection in muroid rodents, a model vertebrate group displaying a broad range of mating systems. Specifically, we sequenced 7 genes from diverse rodents that are expressed in the testes, prostate, or seminal vesicles, products of which have the potential to act in sperm competition. We inferred positive Darwinian selection in these genes by estimation of the ratio of nonsynonymous (d(N), amino acid changing) to synonymous (d(S), amino acid retaining) substitution rates (omega = d(N)/d(S)). Next, we tested whether variation in this ratio among lineages could be attributed to interspecific variation in mating systems, as inferred from the variation in these rodents' relative testis sizes (RTS). Four of the 7 genes examined (Prm1, Sva, Acrv1, and Svs2, but not Svp2, Msmb, or Spink3) exhibit unambiguous evidence of positive selection. One of these, the seminal vesicle-derived protein Svs2, also shows some evidence for a concentration of positive selection in those lineages in which sperm competition is common. However, this was not a general trend among all the rodent genes we examined. Using the same methods, we then reanalyzed previously published data on 2 primate genes, SEMG1 and SEMG2. Although SEMG2 also shows evidence of positive selection concentrated in lineages subject to high levels of sperm competition, no such trend was found for SEMG1. Overall, despite a high rate of positive selection being a feature of many ejaculate proteins, these results indicate that the action of sexual selection potentially responsible for elevated evolutionary rates may be difficult to detect on a gene-by-gene basis. Although the extreme diversity of reproductive phenotypes exhibited in nature attests to the power of sexual selection, the extent to which this force predominates in driving the rapid molecular evolution of reproductive genes therefore remains to be determined.  相似文献   

15.
To demonstrate that a given change in the environment has contributed to the emergence of a given genotypic and phenotypic shift during the course of evolution, one should ask to what extent such shifts would have occurred without environmental change. Of course, such tests are rarely practical but phenotypic novelties can still be correlated to genomic shifts in response to environmental changes if enough information is available. We surveyed and re-evaluated the published data in order to estimate the role of environmental changes on the course of species and genomic evolution. Only a few published examples clearly demonstrate a causal link between a given environmental change and the fixation of a genomic variant resulting in functional modification (gain, loss or alteration of function). Many others suggested a link between a given phenotypic shift and a given environmental change but failed to identify the underlying genomic determinant(s) and/or the associated functional consequence(s). The proportion of genotypic and phenotypic variation that is fixed concomitantly with environmental changes is often considered adaptive and hence, the result of positive selection, even though alternative causes, such as genetic drift, are rarely investigated. Therefore, the second aim herein is to review evidence for the mechanisms leading to fixation.  相似文献   

16.
φX174 was developed as a model system for experimental studies of evolution because of its small genome size and ease of cultivation. It has been used extensively to address statistical questions about the dynamics of adaptive evolution. Molecular changes seen during experimental evolution of φX174 under a variety of conditions were compiled from 10 experiments comprising 58 lineages, where whole genomes were sequenced. A total of 667 substitutions was seen. Parallel evolution was rampant, with over 50 per cent of substitutions occurring at sites with three or more events. Comparisons of experimentally evolved sites to variation seen among wild phage suggest that at least some of the adaptive mechanisms seen in the laboratory are relevant to adaptation in nature. Elucidation of these mechanisms is aided by the availability of capsid and pro-capsid structures for φX174 and builds on years of genetic studies of the phage life history.  相似文献   

17.
Computer simulation is an essential tool in the analysis ofDNA sequence variation for mapping events of recent adaptiveevolution in the genome. Various simulation methods are employedto predict the signature of selection in sequence variation.The most informative and efficient method currently in use iscoalescent simulation. However, this method is limited to simplemodels of directional selection. Whole-population forward-in-timesimulations are the alternative to coalescent simulations formore complex models. The notorious problem of excessive computationalcost in forward-in-time simulations can be overcome by varioussimplifying amendments. Overall, the success of simulationsdepends on the creative application of some population genetictheory to the simulation algorithm.   相似文献   

18.
The problem of modifier evolution was examined with regard to the idea that modifier evolution can be considered as a result of selection for adaptation speed in populations far from equilibrium. This kind of selection was called feedback selection in order to emphasize the difference to theories which consider modifier evolution near the equilibrium. The basic principles of this kind of selection are derived for asexual populations and the problem of dominance is discussed in the light of this concept. In general the results support the view, that the genetic properties of a character are selected along with the character itself.This work was supported by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung (Proj. Nr. 3502).  相似文献   

19.
Restriction enzymes produced by bacteria serve as a defense against invading bacteriophages, and so phages without other protection would be expected to undergo selection to eliminate recognition sites for these enzymes from their genomes. The observed frequencies of all restriction sites in the genomes of all completely sequenced DNA phages (T7, lambda, phi X174, G4, M13, f1, fd, and IKe) have been compared to expected frequencies derived from trinucleotide frequencies. Attention was focused on 6-base palindromes since they comprise the typical recognition sites for type II restriction enzymes. All of these coliphages, with the exception of lambda and G4, exhibit significant avoidance of the particular sequences that are enterobacterial restriction sites. As expected, the sequenced fraction of the genome of phi 29, a Bacillus subtilis phage, lacks Bacillus restriction sites. By contrast, the RNA phage MS2, several viruses that infect eukaryotes (EBV, adenovirus, papilloma, and SV40), and three mitochondrial genomes (human, mouse, and cow) were found not to lack restriction sites. Because the particular palindromes avoided correspond closely with the recognition sites for host enzymes and because other viruses and small genomes do not show this avoidance, it is concluded that the effect indeed results from natural selection.   相似文献   

20.
The importance of infrequent events for both adaptive evolution and the evolution of species interactions is largely unknown. We investigated how the infrequent production of large seed crops (masting) of a bird-dispersed tree (whitebark pine, Pinus albicaulis) influenced phenotypic selection exerted by its primary avian seed predator-disperser, the Clark's nutcracker (Nucifraga columbiana). Selection was not evident during common years of low seed abundance, whereas it was replicated among areas and favoured traits facilitating seed dispersal during infrequent years of high seed abundance. Since nutcrackers act mostly as seed predators during small seed crops but as seed dispersers during the largest seed crops, trees experienced strong selection from nutcrackers only during infrequent years when the interaction was most strongly mutualistic. Infrequent events can thus be essential to both adaptive evolution and the evolutionary dynamics of species interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号